Machine learning of Rotational spectra analysis in interstellar medium

Authors

  • Humphrey Sam Samuel Federal University Wukari
  • Emmanuel Edet Etim* Federal University Wukari, Taraba State
  • John Paul Shinggu Federal University Wukari, Taraba State
  • Bulus. Bako Federal University Wukari, Taraba State

Keywords:

Machine learning, artificial intelligence, interstellar molecules, rotational spectroscopy

Abstract

Communication in Physical Sciences, 2023, 10(1): 172-203

Authors: Humphrey Sam Samuel, *Emmanuel Edet Etim, John Paul Shinggu and Bulus. Bako

Received:  14 February 2023/Accepted 20 November 2023

In the investigation of rotating spectra concerning the interstellar medium, machine-learning approaches have been documented as effective instrument. The understanding of molecular rotational transitions in space and can be a significant source of information on the dynamics, physical properties, and chemical make-up of interstellar spaces. Traditional analytical techniques are however confronted with difficulties when dealing with the enormous and complicated information produced by telescopic observations. The handling of these massive datasets and the extraction of useful data from rotating spectra can be accomplished using machine learning methods, which are a promising approach. This article gives a general overview of the developments of machine learning in the analysis of rotational spectra in the interstellar medium. It goes over how to recognize and describe molecular transitions using supervised and unsupervised learning algorithms, deep learning architectures, and spectral line fitting methods. Also, machine learning algorithms can aid detection of spectral lines that are weak or infrequent but may contain important data regarding the chemical complexity of interstellar areas.

They help make new molecular discoveries and enable the research of previously undiscovered spectral regions in the electromagnetic spectrum. Despite these developments, there are still problems to be solved, such as handling data noise, uncertainty, and over fitting. By enabling effective and automatic extraction of chemical information from complicated datasets, machine learning in rotational spectra analysis revolutionizes the study of interstellar chemistry. It enables scientists to learn about the chemical diversity and development of interstellar regions, making crucial contributions to our comprehension of the genesis and development of the universe.

Downloads

Download data is not yet available.

Author Biographies

Humphrey Sam Samuel, Federal University Wukari

Computational Astrochemistry and Bio-Simulation Research Group

Emmanuel Edet Etim*, Federal University Wukari, Taraba State

Department of Chemical Sciences

John Paul Shinggu, Federal University Wukari, Taraba State

Department of Chemical Sciences

Bulus. Bako , Federal University Wukari, Taraba State

Department of Chemical Sciences

References

Kirk S., John, K., Aaron, O., Daniel A. K., Karen, B., Dave A., Alicia W. & Ganesh, V. (2008). Practical Outcomes of Applying Ensemble Machine Learning Classifiers to High-Throughput Screening (HTS) Data Analysis and Screening. Journal of Chemical Information and Modeling 48, (11), 2196-2206. https://doi.org/10.1021/ci800164u

Agúndez M., Cernicharo J., De Vicente P. (2015). Discovery of HC3O+ in space: The chemistry of O-bearing species in TMC-1. Astronomy & Astrophysics. ;579:L10. doi:10.1051/0004-6361/201526650.

Andrew, C.; Etim E. E.; Ushie, O. A. & Khanal. G. P. (2018). Vibrational-Rotational Spectra of Normal Acetylene and Doubly Deuterated Acetylene: Experimental and Computational Studies. Chemical Science Transactions 7(1), 77-82. DOI:10.7598/cst2018.1432.

Angulo A., Yang L., Aydil E. S, & Modestino M.A. (2022). Machine learning enhanced spectroscopic analysis: towards autonomous chemical mixture characterization for rapid process optimization. Digital Discovery.;1(1):35-44. doi:10.1039/D1DD00027F

Bandos, T. V., Bruzzone L. & G. Camps-Valls, (2009). "Classification of Hyperspectral Images With Regularized Linear Discriminant Analysis," in IEEE Transactions on Geoscience and Remote Sensing, vol. 47, no. 3, pp. 862-873, doi: 10.1109/TGRS.2008.2005729.

Bauer, C. A., Schneider, G. & Göller, A. H. (2029). Gaussian process regression models for the prediction of hydrogen bond acceptor strengths. Mol Inform 38, 1800115, . doi.org/10.1002/minf.201800115

Bin C., Robert P., Sheridan, V. H. & Johannes H. Voigt.(2012). Comparison of Random Forest and Pipeline Pilot Naïve Bayes in Prospective QSAR Predictions. Journal of Chemical Information and Modeling 52 (3) , 792-803. https://doi.org/10.1021/ci200615h

Cernicharo J., Gottlieb C.A, & Guelin M. (1991). Detection of HC5NH+ in TMC-1. The Astrophysical Journal Letters.;368: 39. doi:10.1086/185846.

Chen, R. X., Liu, S., Jin, J. Lin, & J. Liu, (2006). “Machine Learning for Drug Target Interaction Prediction,”, doi: 10.3390/molecules23092208. Available:www.mdpi.com/journal/molecules.

Chen, Z., Alexandre M., Weihua L., & Konstantinos G. (2020). “A deep learning method for bearing fault diagnosis based on Cyclic Spectral Coherence and Convolutional Neural Networks.” Mechanical Systems and Signal Processing, vol. 140, 106683. https://doi.org/10.1016/j.ymssp.2020.106683.

Cheng F., Ye W., Richard G., Sudarshan K., Cheryl B., Patrick T. & Simone S. (2023). Prospective Validation of Machine Learning Algorithms for Absorption, Distribution, Metabolism, and Excretion Prediction: An Industrial Perspective. Journal of Chemical Information and Modeling 63 (11) , 3263 3274. https://doi.org/10.1021/acs.jcim.3c00160

Chowdhury, M.A., Rice, T.E. & Oehlschlaeger, M.A. (2021). Evaluation of machine learning methods for classification of rotational absorption spectra for gases in the 220–330 GHz range. Appl. Phys. B 127, 34 https://doi.org/10.1007/s00340-021-07582-0

Christian K., Bernd B., & Timothy C. (2010). Insolubility Classification with Accurate Prediction Probabilities Using a MetaClassifier. Journal of Chemical Information and Modeling , 50 (3) , 404 414. https://doi.org/10.1021/ci900377e

Claesen M. & B. De Moor, (2015). “Hyperparameter search in machine learning,” arXiv preprint arXiv:1502.02127, arXiv: 1502 . 02127. https://arxiv.org/abs/2302.05911

Clarke, R. H. W. Ressom, A. T. Wang, J. H. Xuan, M. C. Liu, E. A. Gehan, & Y. W. (2021). “The properties of high-dimensional data spaces: implications for exploring gene and protein expression data,” Nature Reviews Cancer, vol. 8, no. 1, pp. 37–49, issn: 1474-175X. doi: 10.1038/nrc2294.

Dai F., Vladimir S., Andy L., Matthew P., & Robert P. S. (2019). Building Quantitative Structure–Activity Relationship Models Using Bayesian Additive Regression Trees. Journal of Chemical Information and Modeling 59 (6) , 2642-2655. https://doi.org/10.1021/acs.jcim.9b00094

Daiguo D., Xiaowei C., Ruochi Z., Zengrong L., Xiaojian W. & Fengfeng Z. X. (2021). GraphBoost: Extracting Graph Neural Network-Based Features for a Better Prediction of Molecular Properties. Journal of Chemical Information and Modeling 61 (6) , 2697-2705. https://doi.org/10.1021/acs.jcim.0c01489

Ertl P. (2021). An algorithm to identify functional groups in organic molecules. J Cheminform 9:1–7. https://doi.org/10.1186/s13321-017-0225-z

Etim E.E., & E. Arunan (2015). Rotational Spectroscopy and Interstellar Molecules. Planex News letter, 5 (2): 16-21. Invited mini-review article.

Etim, E. E., Adelagun, R.O.A; Andrew, C; Oladimeji, E. (2021). Optimizing the Searches for Interstellar Heterocycles. Advances in Space Research Journal, https://doi.org/10.1016/j.asr.2021.06.003.

Etim, E. E., (2015). Benchmark Studies on the Isomerization Enthalpies for Interstellar Molecular Species J. Nig. Soc. Phys. Sci. 5, 527. https://doi.org/10.46481/jnsps.2023.527

Etim, E. E., C. Andrew, U. Lawal, I. S. & Etiowo G. U. (2020). Protonation of Carbonyl Sulfide: Ab initio Study. Journal of Applied Sciences, 20: 26-34. DOI: 10.3923/jas.2020.26.34

Etim, E. E., Gorai, P., Das,A., Chakrabarti, S. K & Arunan, E. (2018). Interstellar Hydrogen Bonding. Advances in Space Research, 61(11): 2870-2880, https://doi.org/10.1016/j.asr.2018.03.003.

Etim, E. E., Gorai, P., Das,A., Chakrabarti, S. K & Arunan, E. (2018a). Interstellar Hydrogen Bonding. Advances in Space Research, 61(11): 2870-2880, https://doi.org/10.1016/j.asr.2018.03.003.

Etim, E. E., Inyang, E. J., Ushie, O. A., Mbakara, I. E., Andrew, C. & Lawal., U. (2017). Is ESA Relationship the tool for searching for Interstellar Heterocycles? FUW Trends in Science and Technology Journal, 2(2): 665-678.

Etim, E. E., J. E. Asuquo, O. C. Ngana & Ogofotha. G. O. (2022). Investigation on the thermochemistry, molecular spectroscopy and structural parameters of pyrrole and its isomers: a quantum chemistry approach. J. Chem. Soc. Nigeria, 47(1):129 - 138.

Etim, E. E., Lawal, U., Andrew, C., & Udegbunam, I. S. (2018). Computational Studies on C3H4N2 Isomers. International Journal of Advanced Research in Chemical Science (IJARCS) 5 (1) 29-40. DOI: http://dx.doi.org/10.20431/2349-0403.0501005

Etim, E. E., Magaji, A. & Ogofotha, G. O. (2022). Pipeline corrosion and its preventions in the oil and gas sector: a review. International Journal of Environment and Bioenergy 17 (1), 1-11.

Etim, E. E., Mbakara, I. E., Khanal, G. P., Inyang, E. J., Ukafia, O. P. & Sambo, I. F. (2017). Coupled Cluster Predictions of Spectroscopic Parameters for (Potential) Interstellar Protonated Species. Elixir Computational Chemistry, 111: 48818-48822.

Etim, E. E., Oko Emmanuel, Godwin, Ifiok F. Sambo, Sulaiman Adeoye Olagboye. (2020a). Quantum Chemical Studies on Furan and Its Isomers. International Journal of Modern Chemistry, 12(1): 77-98.

Etim, E. E., Oko E. G, Sulaiman A.O. (2020). Protonation in Noble Gas Containing Molecular Systems: Observing Periodic Trends in CF3Cl, CF3Br, CH3F, CH3Cl. International Journal of Advanced Research in Physical Science (IJARPS) 7(6): 14-19

Etim, E. E., Oko Godwin E., Ogofotha, G. O. (2021). Quantum Chemical Studies on C4H4N2 Isomeric Molecular Species. J. Nig. Soc. Phys. Sci. 3 429–445. https://doi.org/10.46481/jnsps.2021.282

Etim, E. E., Oko, G. E., Onen, A. I., Ushie, O. A., Andrew, C., Lawal., U, & Khanal, G. P. (2018). Computational Studies of Sulphur Trioxide (SO3) and its Protonated Analogues. J. Chem Soc. Nigeria, 43 (2): 10 – 17.

Etim, E. E., Onen, A.I, Andrew,C., Lawal, U., Udegbunam, I. S. & Ushie, O. A. (2018). Computational Studies of C5H5N Isomers. J. Chem Soc. Nigeria, 43(2):1 – 9.

Etim, E. E., Onudibia, M. E., Asuquo, J. E., Ukafia, O. P., Andrew, C. & Ushie, O.A. (2017).. Interstellar C3S: Different Dipole Moment, Different Column Density, Same Astronomical Source. FUW Trends in Science and Technology Journal, 2 (1B): 574-577.

Etim, E. E., Sulaiman Adeoye Olagboye, Oko Emmanuel Godwin, Irene Mfoniso Atiatah. (2020b). Quantum Chemical Studies on Silicon Tetrafluoride and Its Protonated Analogues. International Journal of Modern Chemistry, 12(1): 26-45

Etim, E. E., Sulaiman A. O., Oko E. G., & Irene M. A. (2020). Quantum Chemical Studies on Silicon Tetrafluoride and Its Protonated Analogues. International Journal of Modern Chemistry, 12(1): 26-45

Etim, E. E., (2023). Benchmark Studies on the Isomerization Enthalpies for Interstellar Molecular Species. J. Nig. Soc. Phys. Sci. 5, 527. https://doi.org/10.46481/jnsps.2023.527 https://arxiv.org/abs/2302.05911

Etim, E.E, Akpan N. I., Ruth O. A., & Usman L. (2020). Deuterated Interstellar and Circumstellar Molecules: D/H Ratio and Dominant Formation Processes. Indian Journal of Physics https://doi.org/10.1007/s12648-020-01747-x

Etim, E.E. & E. Arunan. (2020). Interstellar Isomeric Species: Energy, Stability and Abundance Relationship. European Physical Journal Plus, 131:448. DOI 10.1140/epjp/i2016-16448-0

Etim, E.E, Prsanta Gorai, Ankan Das, & E. Arunan (2018). Theoretical investigation of interstellar C–C–O and C–O–C bonding backbone molecules. Astrophysics and Space Science, 363:6. DOI 10.1007/s10509-017-3226-5

Etim, E.E., Mbakara, I.E., Inyang, E.J., Ushie, O.A., Lawal, U. & Andrew, C. (2017). Spectroscopy of Linear Interstellar Carbon Chain Isotopologues: Meeting Experimental Accuracy. Trop. J. Appl. Nat. Sci., 2(1): 11-16. Doi: https://doi.org/10.25240/TJANS.2017.2.1.03

Etim, E.E., Abah, B.S., Mbakara, I.E., Inyang, E.J., & Ukafia, O.P. (2017). Quantum Chemical Calculations on Silicon Monoxide (SiO) and its Protonated Analogues. . Trop. J. Appl. Nat. Sci., 2(1): 61-68. Doi: https://doi.org/10.25240/TJANS.2017.2.1.10

Etim, E.E., Onudibia, M. E., Asuquo, J. E., Ukafia, O. P., Andrew, C., Ushie, O.A.(2017). Interstellar C3S: Different Dipole Moment, Different Column Density, Same Astronomical Source, FUW Trends in Science and Technology Journal, 2 (1B): 574-577.

Etim, E.E., Prsanta G., Ankan D., & E. Arunan. (2017). C5H9N Isomers: Pointers to Possible Branched Chain Interstellar Molecules. European Physical Journal D, 71:86. DOI: 10.1140/epjd/e2017-70611-3

Etim, E.E., Ugo Nweke-Maraizu., Samuel, H.S, (2023). Techniques used in corrosion inhibition studies: Modelling/computational techniques Communications in Physical Sciences.

Etim, E.E., Ugo Nweke-Maraizu., Samuel, H.S, (2023). A Review of Theoretical Techniques in Corrosion Inhibition Studies. Communication in Physical Sciences, 9(4): 394-403.

Etim, E.E., Ashu, H. A, Mbakara, I.E, Inyang, E. J., Ukafia, O. P, & Sambo, I. F. (2017b). Quantum Chemical Calculations on Oxygen Monofluoride (OF) and its Protonated Analogues: Comparison of Methods. Elixir Computational Chemistry,111: 48823-48827.

Finkelmann A.R., Göller A.H. & Schneider G. (2016). Robust molecular representations for modelling and design derived from atomic partial charges. Chem Commun 52:681–684. https://doi.org/10.1039/c5cc07887c

Giambagli, L., Buffoni, L. & Carletti, T. (2021). Machine learning in spectral domain. Nat Commun 12, 1330 https://doi.org/10.1038/s41467-021-21481-0

Grimme S., Bannwarth C. & Shushkov P. (2017). A robust and accurate tight-binding quantum chemical method for structures, vibrational frequencies, and noncovalent interactions of large molecular systems parametrized for all spd-block elements (Z = 1-86). J Chem Theory Comput 13:1989–2009. https://doi.org/10.1021/acs.jctc.7b00118

Gúndez M, Marcelino N, Cernicharo J. (2018). Tentative detection of HC5NH+ in TMC-1. Astronomy & Astrophysics. 861:L22. doi:10.1051/0004-6361/201833657.

Halgren T.A. (1996). Molecular force field. III. Molecular geometries and vibrational frequencies for MMFF94. J Comput Chem 17:553–586. https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6%3c553:AID JCC3%3e3.0.CO;2-T

Herbst E, & Klemperer W. (1973). The Formation and Depletion of Molecules in Dense Interstellar Clouds. The Astrophysical Journal.;185:505-533. doi:10.1086/152436.

Hiromasa Kaneko (2018). Discussion on Regression Methods Based on Ensemble Learning and Applicability Domains of Linear Submodels. Journal of Chemical Information and Modeling 58 (2) 480-489. https://doi.org/10.1021/acs.jcim.7b00649

Hirota T, Ito T, & Yamamoto S. (2002). A Study of the Physical and Chemical Properties of the Quiescent Cores L1521B and L1521E. The Astrophysical Journal.;565:359-372.doi:10.1086/324588.

Huang W, Cheng J, Yang Y, Guo G. (2019). An improved deep convolutional neural network with multi-scale information for bearing fault diagnosis. Neurocomputing. 359:77-92. doi:10.1016/j.neucom.2019.05.052

Janet JP, Kulik HJ, Morency Y, Caucci MK. Machine Learning in Chemistry. ACS In Focus (Washington, DC: American Chemical Society). 2020.

Jesse G. Meyer, Shengchao Liu, Ian J. Miller, Joshua J. Coon, & Anthony Gitter (2019). Learning Drug Functions from Chemical Structures with Convolutional Neural Networks and Random Forests. Journal of Chemical Information and Modeling 59 (10), 4438 4449. https://doi.org/10.1021/acs.jcim.9b00236

Jia F, Lei Y, Guo L, Lin J. & Xing S. (2018). A neural network constructed by deep learning technique and its application to intelligent fault diagnosis of machines. Neurocomputing. 272:619-628. doi:10.1016/j.neucom.2017.07.032

Jochen Sieg, Florian F. & Matthias R., (2019). In Need of Bias Control: Evaluating Chemical Data for Machine Learning in Structure-Based Virtual Screening. Journal of Chemical Information and Modeling 59 (3) , 947-961. https://doi.org/10.1021/acs.jcim.8b00712

John M. & Ryszard C. (2008). SAMFA: Simplifying Molecular Description for 3D-QSAR. Journal of Chemical Information and Modeling 48 (6) , 1167 1173. https://doi.org/10.1021/ci800009u

Karteek K. Bejagam, J. L., Carl N. Iverson, B. L. & Marrone, G. P. (2022). Machine Learning for Melting Temperature Predictions and Design in Polyhydroxyalkanoate-Based Biopolymers. The Journal of Physical Chemistry B 126 (4), 934-945. https://doi.org/10.1021/acs.jpcb.1c08354

Kempema, N. J., Sharpe, C., Wu, X., Shahabi, M., & Kubinski, D. (2021). Machine-Learning-Based Emission Models in Gasoline Powertrains Part 2: Virtual Carbon Monoxide. SAE International Journal of Engines, 16(6). https://doi.org/10.4271/03-16-06-0045

Kenya Tanaka, Kengo Hachiya, Wenjin Zhang, Kazunari Matsuda, & Yuhei Miyauchi.(2019). Machine-Learning Analysis to Predict the Exciton Valley Polarization Landscape of 2D Semiconductors. ACS Nano 13 (11), 12687 12693. https://doi.org/10.1021/acsnano.9b04220

Kim S, Chen J, & Cheng T. (2021). New data content and improved web interfaces. Nucleic Acids Res. 49:D1388. PubChem in 2021 doi:10.1093/nar/gkaa971.

Krizhevsky, A. I. Sutskever, & G. E. Hinton, (2012). “ImageNet Classification with Deep Convolutional Neural Networks,” Tech. Rep., pp. 1097–1105

Lee, K. L., Loomis R. A. & Burkhardt A.M. (2021). Discovery of Interstellar trans-cyanovinylacetylene (HC # CCH = CHC # N) and vinylcyanoacetylene (H 2 C = CHC 3 N) in GOTHAM Observations of TMC-1. Astrophysical Journal Letters. 908:L11. doi:10.3847/2041-8213/abdbb9.

Leonard Tan, Ooi Kiang Tan, Chun Chau Sze, Wilsonm & Wen Bin Goh. (2023). Emotional Variance Analysis: A new sentiment analysis feature set for Artificial Intelligence and Machine Learning applications, PLOS ONE, 18, 1, (e0274299). https://doi.org/10.1371/journal.pone.0274299

Liu, Youlin. (2021). Machine learning methods for spectral analysis. Purdue University Graduate School. Thesis. https://doi.org/10.25394/PGS.15040332.v1

Liu,W. Z. Wang, X. Liu, N. Zeng, Y. Liu, & Alsaadi, F. E. (2017). “A survey of deep neural network architectures and their applications,” Neurocomputing, vol. 234, pp. 11–26, Apr. issn: 18728286. doi: 10.1016/j.neucom.2016.12.038.

Longqiang Li, Zhou Lu, Guixia Liu, Yun Tang, & Weihua Li. (2023). Machine Learning Models to Predict Cytochrome P450 2B6 Inhibitors and Substrates. Chemical Research in Toxicology Article ASAP.

Luinge, H.J., van der Maas, J.H. & Visser, T. (1995). Partial least squares regression as a multivariate tool for the interpretation of infrared spectra. Chemometrics and intelligent laboratory system, 28, 125–138. 15

Madden, M.G. & Ryder A.G. (2002). Machine learning methods for quantitative analysis of Raman Spectroscopy data. In Proceedings of SPIE, Vol. 4876, 1013-1019

Mattioda AL, Hudgins DM, Boersma C. (2020). The NASA Ames PAH IR Spectroscopic Database: The 2019 Release. Astrophysical Journal Supplement Series.;251(2):22. doi:10.3847/1538-4365/abb3db.

McGuire BA, Burkhardt AM, Loomis R. (2020). Discovery of Interstellar trans-cyanovinylacetylene (HC # CCH = CHC # N) and vinylcyanoacetylene (H 2 C = CHC 3 N) in GOTHAM Observations of TMC-1. Astrophysical Journal Letters.;900(1):L10. doi:10.3847/2041-8213/abafaf

McGuire B.A. (2018). 2018 census of interstellar, circumstellar, extragalactic, protoplanetary disk, and exoplanetary molecules. Astrophys J Suppl Ser.239(1):17. doi:10.3847/1538-4365/aae5d2

Meduri S, & Nandanavanam J. (2023). Prediction of hydrogen uptake of metal organic frameworks using explainable machine learning. Energy and AI. 12:100230. doi:10.1016/j.egyai.2023.100230

Mercier G. & M. Lennon, (2003). "Support vector machines for hyperspectral image classification with spectral-based kernels," IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477), Toulouse, pp. 288-290 vol.1, doi: 10.1109/IGARSS.2003.1293752.

Minjie Mou, Ziqi Pan, Mingkun Lu, Huaicheng Sun, Yunxia Wang, Yongchao Luo, & Feng Zhu. (2002). Application of Machine Learning in Spatial Proteomics. Journal of Chemical Information and Modeling 62 (23) , 5875-5895. https://doi.org/10.1021/acs.jcim.2c01161

Neumann, J. S. Christoph, S. Gabriele, C. Schn¨orr, & G. Steidl, (2005). “Combined SVMBased Feature Selection and Classification,” Machine Learning, vol. 61, no. 1-3, pp. 129– 150, issn: 0885-6125. doi: 10.1007/s10994-005-1505-9.

Oliveira JCA, Frey J, Zhang SQ, Xu LC, Li X, Li SW, Hong X, & Ackermann L. (2022). When machine learning meets molecular synthesis. Trends in Chemistry. 4(10):863-885. doi:10.1016/j.trechm.2022.07.005.

Onen, A. I., Joseph, J., Etim, E. E., & Eddy, N. O. (2017). Quantum Chemical Studies on the Inhibition Mechanism of Ficus carica, FC and Vitellaria paradoxa, VP Leaf Extracts. Journal of Advanced Chemical Sciences, 3(3):496-498. http://jacsdirectory.com/journal-of-advanced-chemical-sciences/articleview.php?id=155

Osigbemhe, I. G., Emmanuella E.O., HitlerLouis, E. M. Khan, E. E. Etim., Henry O. E., Onyinye J. I., Amoawe P. O.,& Faith O. (2022c). Antibacterial potential of N-(2-furylmethylidene)-1, 3, 4-thiadiazole-2-amine: Experimental and theoretical investigations. Journal of the Indian Chemical Society, 99 (9): 100597. https://www.sciencedirect.com/science/article/abs/pii/S001945222200259X

Osigbemhe, I.G., Louis, H., Khan, E.M., Etim, E. E., Odey, D. O., Oviawe, A. P., Edet, H. O., & Obuye, F. (2022a). Synthesis, characterization, DFT studies, and molecular modeling of 2-(-(2-hydroxy-5-methoxyphenyl)-methylidene)-amino) nicotinic acid against some selected bacterial receptors. J IRAN CHEM SOC https://doi.org/10.1007/s13738-022-02550-7

Osigbemhe, I.G., Louis, H., Khan, E.M., Etim, E. E., Odey, D. O., Oviawe, A. P., Edet, H. O., & Obuye, F. (2022b). Antibacterial Potential of 2-(-(2-Hydroxyphenyl)-methylidene)-amino)nicotinic Acid: Experimental, DFT Studies, and Molecular Docking Approach. Appl Biochem Biotechnol https://doi.org/10.1007/s12010-022-04054-9

Pathak, D.K., Kalita, S.K. & Bhattacharya, D. K. (2022). Hyperspectral image classification using support vector machine: a spectral spatial

feature based approach. Evol. Intel. 15, 1809–1823. https://doi.org/10.1007/s12065-021-00591-0

Pedregosa, F. & Varoquaux G. (2012). A Scikit-learn: machine Learning in Python. J Mach Learn Res 12:2825–2830

Pellegrino, E., Jacques, C., Beaufils, N. (2021). Machine learning random forest for predicting oncosomatic variant NGS analysis. Sci Rep 11, 21820. https://doi.org/10.1038/s41598-021-01253-y

Prachi Garg, Scott Broderick, Baishakhi Mazumder. (2023). Machine learning‐based accelerated design of fluorphlogopite glass ceramic chemistries with targeted hardness. Journal of the American Ceramic Society 106 (8), 4654-4663. https://doi.org/10.1111/jace.19133

Prasanta Gorai, Ankan Das, Amaresh Das, Bhalamurugan Sivaraman, Emmanuel E. Etim, & Sandip K. (2017). A Search for Interstellar Monohydric Thiols. The Astrophysical Journal, 836, 70. DOI 10.3847/1538-4357/836/1/70

Provost, F. & T. Fawcett, (2017). “Data Science and its Relationship to Big Data and DataDriven Decision Making,” Big Data, vol. 1, no. 1, pp. 51–59, issn: 2167647X. doi: 10.1089/big.2013.1508.

Qianyi Zhang, Jacqueline M. Hughes-Oliver & Raymond T. N. (2009). A Model-Based Ensembling Approach for Developing QSARs. Journal of Chemical Information and Modeling 49 (8) , 1857-1865. https://doi.org/10.1021/ci900080f

Qinghua Wang, Zhe Wang, Qirui Deng, Sutong Xiang, Rongfan Tang, Haiping Hao, & Huiyong Sun. (2023). Discriminating functional and non-functional nuclear-receptor ligands with a conformational selection-inspired machine learning algorithm. Cell Reports Physical Science 4 (7), 101466. https://doi.org/10.1016/j.xcrp.2023.101466

Raissi, P. Perdikaris, & G. E. Karniadakis (2019). “Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations,” Journal of Computational Physics, vol. 378, pp. 686–707, issn: 10902716. doi: 10.1016/j.jcp.2018.10.045.

Rasmussen C. E. (2004). Gaussian Processes in Machine Learning. In: Bousquet O, von Luxburg U, Rätsch G (eds) Advanced Lectures on Machine Learning: ML Summer Schools Springer, pp 63–71 Berlin Heidelberg,

Robert P. S. (2012). Three Useful Dimensions for Domain Applicability in QSAR Models Using Random Forest. Journal of Chemical Information and Modeling 52 (3) , 814-823. https://doi.org/10.1021/ci300004n

Robert P. S. (2013). Using Random Forest To Model the Domain Applicability of Another Random Forest Model. Journal of Chemical Information and Modeling 53 (11), 2837-2850. https://doi.org/10.1021/ci400482e

Samuel, H. S., Nweke-Maraizu, U., Johnson, G., & Etim, E. E. (2023). Nonelectrochemical Techniques in corrosion inhibition studies: Analytical techniques. Communication in Physical Sciences, 9(3), 383-393

Samuel, H.S, Etim, E.E., & Ugo Nweke-Maraizu., (2023). Understanding the experimental and computational approach in characterizing intermolecular and intramolecular hydrogen bond, Journal of Chemical Review, 5(4), 439-465. https://doi.org/10.48309/JCR.2023.407989.1235

Samuel, H.S., U. Nweke-Mariazu, & E. E. Etim‎. (2023). Experimental and Theoretical Approaches for Characterizing Halogen Bonding.‎ J. Appl. Organomet. Chem., 3(3), 169-183. https://doi.org/10.22034/jaoc.2023.405412.1088

Samuel, H.S., E. E. Etim‎, U. Nweke-Maraizu. (2023). Approaches for Special Characteristics of Chalcogen Bonding: A mini Review.‎ J. Appl. Organomet. Chem., 3(3), 199-212. https://doi.org/10.22034/jaoc.2023.405432.1089

Sarkar S, Chakraborty S. & Das S. (2021). Machine learning enabled quantification of the hydrogen bonds inside the polyelectrolyte brush layer probed using all-atom molecular dynamics simulations. J Chem Phys. 155(14):144902. doi:10.1063/5.0062659

Shinggu, J. P.; Etim, E. E, & Onen, A. I., (2023). Quantum Chemical Studies on C2H2O Isomeric Species: Astrophysical Implications, and Comparison of Methods. Communication in Physical Sciences, 9(2): 93-105.

Stein, H. S., Guevarra, D., Newhouse, P. F., Soedarmadjia, E., & Gregoire, J. M. (2019). Machine learning of optical properties of materials – predicting spectra from images and images from spectra. Chemical Science. https://doi.org/10.1039/C8SC03077D

Sun, Y., Brockhauser, S., Hegedűs, P. (2021). Machine Learning Applied for Spectra Classification. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science, vol 12957. Springer, Cham. https://doi.org/10.1007/978-3-030-87013-3_5

Suwarno S, Dicky G, Suyuthi A, Effendi M, Witantyo W, Noerochim L. & Ismail M. (2022). Machine learning analysis of alloying element effects on hydrogen storage properties of AB2 metal hydrides. Int J Hydrogen Energy 47(23):11938-11947. doi:10.1016/j.ijhydene.2022.01.210

Tetko, D. J. Livingstone, & A. I. Luik, (1995). “Neural Network Studies. 1. Comparison of Overfitting and Overtraining,” Journal of Chemical Information and Computer Sciences, 35, 5, pp. 826–833, issn: 00952338. doi: 10.1021/ci00027a006.

Thereza A. Soares, Ariane Nunes-Alves, Angelica Mazzolari, Fiorella Ruggiu, Guo-Wei Wei, & Kenneth Merz. (2022). the (Re)-Evolution of Quantitative Structure–Activity Relationship (QSAR) Studies Propelled by the Surge of Machine Learning Methods. Journal of Chemical Information and Modeling, 62 (22) , 5317-5320. https://doi.org/10.1021/acs.jcim.2c01422

Todd M. Martin, Paul Harten, Douglas M. Young, Eugene N. Muratov, Alexander Golbraikh, Hao Zhu, & Alexander Tropsha. (2012). Does Rational Selection of Training and Test Sets Improve the Outcome of QSAR Modeling?. Journal of Chemical Information and Modeling 52 (10) , 2570-2578. https://doi.org/10.1021/ci300338w

Ushie O.A, Etim, E.E, Adamu, H.M, Chindo, I.Y.Andrew, C & Khanal, G.P. (2017). Quantum Chemical Studies on Decyl Heptadecanoate (C27H54O2) Detected In Ethyl Acetae Leaf Extract of Chrysophyllum albidium. Elixir Applied Chemistry, 111: 48828-48838.

Ushie, O. A., Etim, E. E., Onen, A. I., Andrew, C., Lawal, U., & Khanal, G.P., (2019). Computational Studies of β-amyrin acetate (C32H52O2) Detected in Methanol Leaf Extract of Chrysophyllum albidium. J. Chem Soc. Nigeria, Vol. 44, No. 3, pp 561 -581.

Velasco L, Ruiz M, Shariati B, & Vela AP. (2022). Chapter Eight - Machine Learning for optical spectrum analysis. In: Lau APT, Khan FN, eds. Machine Learning for Future Fiber-Optic Communication Systems. Academic Press;:225-279. doi:10.1016/B978-0-32-385227-2.00015-2

Von Lilienfeld O. A. (2014). Quantum machine learning in chemical compound space. Angew Chemie Int Ed 57:4164–4169. https://doi.org/10.1002/anie.201709686

Wang X, Shen C, Xia M, Wang D, Zhu J, Zhu Z. (2020). Multi-scale deep intra-class transfer learning for bearing fault diagnosis. Reliability Engineering & System Safety. 202:107050. doi:10.1016/j.ress.2020.107050

Wei Ying Tan, Carol Hargreaves, Christopher Chen, & Saima Hilal, (2023). A Machine Learning Approach for Early Diagnosis of Cognitive Impairment Using Population-Based Data, Journal of Alzheimer's Disease, 91, 1, (449-461). https://doi.org/10.3233/JAD-220776

Weimin Zhu, Yi Zhang, Duancheng Zhao, Jianrong Xu, & Ling Wang. (2023). HiGNN: A Hierarchical Informative Graph Neural Network for Molecular Property Prediction Equipped with Feature-Wise Attention. Journal of Chemical Information and Modeling 63 (1) , 43-55. https://doi.org/10.1021/acs.jcim.2c01099

Wendy L. Williams, Lingyu Zeng, Tobias Gensch, Matthew S. Sigman, Abigail G. Doyle, Eric V. Anslyn.(2021). The Evolution of Data-Driven Modeling in Organic Chemistry. ACS Central Science 7 (10) , 1622-1637. https://doi.org/10.1021/acscentsci.1c00535

Xia Zhao, Yuhao Sun, Ruiqiu Zhang, Zhaoyang Chen, Yuqing Hua, Pei Zhang, Huizhu Guo, Xueyan Cui, Xin Huang, & Xiao Li.(2022). Machine Learning Modeling and Insights into the Structural Characteristics of Drug-Induced Neurotoxicity. Journal of Chemical Information and Modeling 62 (23) , 6035-6045. https://doi.org/10.1021/acs.jcim.2c01131

Xiangyu Zhang, Jing Cui, Kexin Zhang, Jiasheng Wu, & Yongjin Lee. (2019). Machine Learning Prediction on Properties of Nanoporous Materials Utilizing Pore Geometry Barcodes. Journal of Chemical Information and Modeling 59 (11) , 4636-4644. https://doi.org/10.1021/acs.jcim.9b00623

Yajuan Shi, Jiang Wang, Qiang Wang, Qingzhu Jia, Fangyou Yan, Zheng-Hong Luo, & Yin-Ning Zhou. (2022). Supervised Machine Learning Algorithms for Predicting Rate Constants of Ozone Reaction with Micropollutants. Industrial & Engineering Chemistry Research 61 (24) , 8359-8367. https://doi.org/10.1021/acs.iecr.1c04697

Yang, H., Griffiths, P.R. & Tate, J.D. (2003). Comparison of partial least squares regression and multi-layer neural networks for quantification of non-linear systems and application to gas phase fourier transfrom infrared spectra. Analytica Chimica Acta, 489, 125–136. 13

Yuxuan Hu, Qiuhan Ren, Xintong Liu, Liming Gao, Lecheng Xiao, & Wenying Yu. (2003). In Silico Prediction of Human Organ Toxicity via Artificial Intelligence Methods. Chemical Research in Toxicology, 36 (7), 1044-1054. https://doi.org/10.1021/acs.chemrestox.2c00411

Zaw-Myo Win, Allen M. Y. Cheong, W. & Scott H. (2023). Using Machine Learning To Predict Partition Coefficient (Log P) and Distribution Coefficient (Log D) with Molecular Descriptors and Liquid Chromatography Retention Time. Journal of Chemical Information and Modeling 63 (7), 1906-1913. https://doi.org/10.1021/acs.jcim.2c01373

Zhang Z, Huang W, Liao Y, Song Z, Shi J, Jiang X, Shen C, & Zhu Z. (2022). Bearing fault diagnosis via generalized logarithm sparse regularization. Mechanical Systems and Signal Processing. 167(Part B):108576. doi:10.1016/j.ymssp.2021.108576

Zhang, R. H. Xie, S. Cai, Y. Hu, G.-k. Liu, W. Hong, & Z.-q. Tian, (2020). “Transfer-learningbased Raman spectra identification,” Journal of Raman Spectroscopy, vol. 51, no. 1, pp. 176–186, issn: 0377-0486. doi: 10.1002/jrs.5750.

Zhang,C. S. Bengio, M. Hardt, B. Recht, & O. Vinyals, (2017). “Understanding deep learning requires rethinking generalization,” 5th International Conference on Learning Representations, ICLR - Conference Track Proceedings

Zhao Z, Li T, Wu J, Sun C, Wang S, Yan R, & Chen X. (2023). Deep learning algorithms for rotating machinery intelligent diagnosis: An open source benchmark study. ISA Transactions. 107:224-255. doi:10.1016/j.isatra.2020.08.010

Zou, T., Dou, Y., Mi, H., Ren, Y. & Ren, Y.(2007). Support vector regression for determination of component of compound oxytetracycline powder on near-infrared spectroscopy. Analytical Biochemistry, 355, 1–7. 14.

Downloads

Published

2023-11-25