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Abstract: Machine Learning (ML) has 

become a game-changing tool in many 

scientific sectors, altering research and 

spurring progress in a wide range of fields. 

The incorporation of ML approaches has 

created new predictive modelling 

opportunities in the context of 

thermochemistry, enabling more accurate 

and efficient prediction of the 

thermodynamic parameters of chemical 

systems. The article emphasizes the use of 

machine learning techniques in 

thermochemistry, highlighting the potential 

advantages and difficulties encountered in 

this quickly expanding field. The application 

of these algorithms helps in the prediction of 

fundamental thermodynamic quantities, 

including enthalpy, entropy, heat capacity, 

and free energy, allowing researchers to learn 

more about the energetics of chemical 

reactions and the stability of intricate 

molecular systems. The article also discusses 

openness, accountability, and the appropriate 

use of these formidable tools to ensure 

scientific integrity and prevent potential 

biases. These issues are related to the ethical 

problems linked with the application of ML 

in thermochemistry. As a result of the 

application of machine learning to 

thermochemistry research, a new era of 

predictive modelling has begun, offering a 

variety of opportunities to understand the 

intricate workings of chemical systems. ML 

provides enormous promise for expediting 

scientific discovery and improving our 

comprehension of thermodynamics in 

chemistry by eliminating obstacles and 

incorporating moral principles. 
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1.0 Introduction 
 

The study of the heat energy changes that 

take place during chemical reactions and 

other physical processes is the focus of the 

discipline of physical chemistry known as 

thermochemistry. Chemical engineering, 

material science, pharmaceuticals, and 

environmental chemistry are some scientific 

and commercial fields  that rely on 

thermochemistry to a good extent. 

Thermochemistry, a subfield of physical 

chemistry, studies the  energy changes that 

take place during physical and chemical 

processes. Understanding the stability, 

reactivity, and behaviour of chemical 

systems depends on the precise prediction of 

thermodynamic parameters (Oliveira, et al., 

2022). The exploration of huge chemical 

regions was previously constrained by the 

time-consuming and complicated 

experimental procedures required to achieve 

these properties. With its invaluable insights 

into the stability, reactivity, and viability of 

chemical reactions, thermochemistry is 

crucial to both scientific inquiry and 

industrial applications (Agúndez, et al., 

2015). Researchers can refine procedures, 

create effective reactions, and create 

environmentally friendly technology by 

looking at the energy changes that take place 

during chemical transformations. However, 

the development of machine learning (ML) 

has fundamentally changed how scientists 

approach thermochemistry. Thermodynamic 

characteristics can be predicted more 

effectively and accurately using machine 

learning (ML), a potent computational 

technology that makes it possible to identify 

patterns and insights from enormous amounts 

of data (Samuel, et al., 2023). Researchers 

can now unleash the potential to speed 

discoveries, improve chemical processes, and 

spur innovation in a variety of sectors like 

material science and medicines by utilizing 

ML algorithms. A branch of artificial 

intelligence known as machine learning (ML) 

involves the creation of statistical models and 

techniques that allow computers to learn 

from data without explicit programming. ML 

provides a potent and cutting-edge method 

for predicting thermodynamic parameters 

and comprehending energy changes in 

chemical systems in the context of 

thermochemistry (Gúndez , et al., 2018).  

Although machine learning has the potential 

to be transformative, there are still some 

ethical issues that are associated with it 

concerningthermochemistry research. To 

preserve scientific integrity, reduce biases, 

and uphold ethical norms in scientific 

pursuits, transparency, accountability, and 

responsible usage of ML algorithms are 

crucial. A paradigm change in the field of 

thermochemistry research has been achieved 

with the incorporation of machine learning. 

Predictive modelling and data-driven insights 

made possible by machine learning enable 

researchers to comprehend and manipulate 

chemical systems more quickly. ML offers 

the key to opening up new thermochemical 

frontiers, promoting innovation, and creating 

a more sustainable future by resolving 

obstacles and embracing ethical behaviours 

(Hirota, et al., 2002). ML algorithms can be 

trained on enormous datasets of experimental 

and theoretical thermodynamic data. Then, 

compared to conventional techniques, these 

models can be utilized to estimate the 

thermodynamic properties of complex 

chemical systems (Janet, et al., 2020). Also, 

machine learning makes it possible to extract 

significant correlations and patterns from 

huge datasets. (Lee, et al., 2021). Discoveries 

are made far more quickly thanks to ML's 

high-throughput chemical system screening 

capabilities, which hasten the development of 

new materials, catalysts, and reaction 

pathways. By doing so, it is quicker to 

identify candidates for additional 

experimental validation. Furthermore, 

Complex systems with lots of variables are 

frequently used in thermochemistry research 

(Mattioda, et al., 2020). In contrast to 

conventional linear regression methods, ML 

techniques like neural networks can handle 

this complexity and describe nonlinear 

interactions between variables. ML can be 

https://orcid.org/0009-0001-3946-0712
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used to develop valuable surrogate models 

based on available data, boosting the 

knowledge base for researchers, in 

circumstances when experimental 

thermodynamic data is scarce or expensive to 

gather (McGuire, 2018). Understanding 

energy changes and reactions in chemical 

systems through thermochemistry is crucial 

for gaining a fundamental understanding of a 

variety of scientific and practical 

applications. A transformative technique for 

improving our understanding of energy 

changes in chemical systems, the 

incorporation of machine learning in 

thermochemistry research has major benefits 

for predictive modelling, data-driven 

insights, and speeding up scientific discovery 

(Zhao, et al., 2020). The aim of the study  

examine how machine learning is used in 

thermochemistry research and demonstrate 

its potential for predictive modelling and 

data-driven discoveries. The scope explores 

the many  machines learning (ML) 

approaches frequently used in this setting. 

Researchers may create models that precisely 

predict crucial thermodynamic variables like 

enthalpy, entropy, heat capacity, and free 

energy using these techniques. 

 

1.1 Role of Machine Learning in 

Thermochemistry 

Machine Learning (ML) has become a game-

changing technology in many fields of 

science, including chemistry.  ML  that are 

applied in thermochemistry have 

revolutionized how scientists examine 

energy fluctuations and reactions in chemical 

systems. The study of chemical spaces, the 

identification of novel materials, and the 

prediction of thermodynamic properties are 

all made possible by machine learning 

approaches (Ori, et al., 2023).  The machine 

learning's function in thermochemistry 

includes: 

i. Predictive Thermodynamic Property 

Modelling: Large datasets of experimental 

and theoretical thermodynamic data can be 

used to train machine learning algorithms to 

create prediction models. These models can 

then be used to calculate complex chemical 

systems' enthalpy, entropy, heat capacity, 

and free energy, among other 

thermodynamic parameters (Etim, et al., 

2020). Traditional approaches can be greatly 

outperformed by ML models, which also 

produce predictions that are more precise 

and dependable. An example is predicting 

the OER catalytic activities of hOER by 

comparing DFT and machine learning. The 

best performing ML models obtained in 

figure 1.0 is then used to predict the OER 

catalytic activities hOER of  a SAC of the 

remaining 14 transition metal species (that 

is, Sc, Y, Zr, Tc. The most stable isotopes of 

Tc have a half-life ranging from 211,000 

years to 4.21 million years.], Nb, Rh, Cd, Hf, 

Ta, W, Re, Os, Ir, and Hg) on an SV site and 

a DV site on a carbon surface, respectively 

(Chen, et al., 2020). 

 

ii. High-Throughput Screening and 

compounds Discovery: Thermochemistry 

research sometimes entails sifting through a 

sizable chemical space in search of 

compounds with particular features. High-

throughput screening powered by ML 

enables researchers to quickly evaluate a 

huge pool of possible candidates. ML 

expedites the development of new 

chemicals, catalysts, and materials for a 

variety of applications, including batteries, 

catalysts, and solar cells, by predicting the 

thermodynamic properties of a wide range 

of materials (Jia, et al., 2018). 

iii. Mechanistic Studies and reaction prediction: 

Mechanistic studies and the prediction of 

reaction pathways are two areas where 

machine learning (ML) can be helpful. ML 

models  can pinpoint the most likely reaction 

routes and transition states by examining the 

energy landscapes of chemical reactions. 

For comprehending reaction mechanisms 

and creating effective synthetic pathways, 

this knowledge is important (Zhang, et al., 

2022). 
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Fig.1: Machine learning in predicting the OER catalytic activity (Chen, et al., 2020). 

 

iv. Solvent and catalyst selection: The best 

catalysts and solvents for a given chemical 

reaction can be chosen with the help of 

machine learning. Researcher decisions on 

the settings of reactions can be guided by 

ML models, which examine the 

connections between solvent or catalyst 

parameters and thermodynamic outcomes. 

This leads to higher yields and selectivity 

(Zhao, et al., 2020). 

v. Data Augmentation and Surrogate Models: 

ML can be used to produce useful surrogate 

models based on available data in situations 

when experimental thermodynamic data is 

scarce or expensive to collect. Researchers 

may explore broader chemical spaces and 

get beyond data constraints thanks to these 

surrogate models, which serve as 

approximate representations of complicated 

thermodynamic phenomena (Tessarini, et 

al., 2022). 

vi. Density Functional Theory (DFT) and 

Quantum Chemistry: To speed up 

computations and lower expenses, ML 

techniques have been combined with 

quantum chemistry approaches like Density 

Functional Theory (DFT). Quantum 

chemical simulations are more accessible 

and useful for large-scale studies when 

combined with machine learning (ML), 

which can be a useful tool for predicting 

DFT-calculated properties. Researchers can 

use ML to get data-driven insights into the 

connections between molecular 

architectures, thermodynamic features, and 

chemical reactivity (Etim, et al., 2023). 

Advanced interpretability techniques also 

assist researchers in comprehending how 

ML models generate certain predictions, 

hence increasing the models' dependability 

and trustworthiness (Etim, et al., 2023). 

vii. Rational drug development: The rational 

design of pharmaceutical compounds can 

benefit from the use of ML in 

thermochemistry in pharmaceutical 

research. When choosing lead compounds 

and improving drug prospects, predictive 

models can calculate solubility, other 

thermodynamic parameters, and drug-

target binding affinities (Whitley, et al., 

2012). 

viii. Impact on the Environment and Sustainable 

Energy: ML in thermochemistry can 

advance the study of sustainable energy by 

enhancing materials for energy conversion 

and storage systems. ML can direct the 

creation of more effective and sustainable 

energy solutions by predicting the 

thermodynamic properties of materials 

(Kuz’min, et al., 2021). 

Machine learning has a significant and 

varied role in thermochemistry. Predictive 

modelling, data-driven insights, and high-

throughput screening are made possible by 

ML approaches, which promote faster 

discovery, better response design, and the 

creation of environmentally friendly 

solutions (Komp, et al., 2022). The study of 

energy changes and reactions in chemical 

systems has the potential to be 

revolutionized by the incorporation of ML 
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with thermochemistry, advancing both 

academic and commercial endeavours. 

1.2 Complex thermodynamic datasets using 

machine learning 

1.3 Data Processing and Analysis 

1.3.1  Preprocessing and cleaning of 

thermochemical data for machine learning 

applications 

Thermochemical data must first be 

preprocessed and cleaned before being used 

in machine-learning applications (Khan, et 

al., 2022). The ability of the ML models to 

properly learn from the data and produce 

precise predictions is ensured by proper data 

preparation. The primary steps in 

preprocessing and cleansing 

thermochemical data are listed below: 

i. Data collection and compilation: Gather 

information on thermochemistry from a 

variety of sources, including 

experimental databases, literature, and 

computer simulations. Make sure the 

information is pertinent to the particular 

thermodynamic properties or reactions 

you are interested in (Barto, et al., 2022). 

ii. Data Formatting and Representation: 

Format the gathered data so that ML 

algorithms may use it. Make sure the 

data is presented consistently, with each 

sample (such as a chemical reaction or 

compound) and its related aspects (such 

as the molecular properties and reaction 

conditions) being correctly organized. 

iii. Handling Missing Data: Due to mistakes 

in the experiments or insufficient 

measurements, thermochemical data 

may have missing values. Missing data 

can negatively impact the training and 

predictions of ML models. Consider 

deleting samples with a considerable 

amount of missing data, or handling 

missing data using imputation 

approaches like mean, median, or 

regression-based imputation (Ushie, et 

al., 2017). 

iv. Outlier Removal and Detection: Outliers 

are data points that dramatically vary 

from the pattern of the data as a whole. 

They might be the outcome of 

anomalous data or flawed experiments. 

Find and eliminate outliers to stop them 

from biasing predicts and impacting 

model training (Baskes, et al., 1997). 

v. Feature selection: The most important 

characteristics that affect the prediction 

of thermodynamic properties should be 

chosen as features (such as molecular 

descriptors and reaction conditions). 

Feature selection aids in lowering the 

data's dimensionality and preventing 

over fitting. 

vi. Scaling of Features: The features should 

be normalized or scaled to a common 

range, such as 0 to 1 or -1 to 1. A feature 

cannot dominate the learning process by 

itself; hence feature scaling ensures that 

all features have an equivalent impact on 

model training (Behler, et al., 2017). 

vii. Encoding Categorical Variables: If the 

data includes categorical variables (such 

as the kind of chemical substance or type 

of reaction), encode them into numerical 

representations using methods such as 

one-hot encoding or label encoding so 

that they can be used successfully in ML 

algorithms (Behler, & Parrinello, 2007). 

viii. Train-Test Split: Separate the training 

and test sets from the preprocessed data. 

The ML model is trained using the 

training set, and its performance is 

assessed using the testing set. For 

training and testing, typical splits are 70-

30 and 80-20, respectively. 

 
Fig. 2: schematic representation of 

train-test split (Behler, & Parrinello, 

2007). 

ix. Adjusting for Class Imbalance: The data 

may occasionally be unbalanced, with 

samples for particular thermodynamic 

properties or reactions being much 

smaller than samples for others. Utilize 

methods like oversampling, under-

sampling, or SMOTE (Synthetic 

Minority Over-sampling Technique) to 
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correct for class imbalance (Behn, et al., 

2011). 

x. Cross-Validation: Use cross-validation 

methods to check the model's 

generalization performance and lower 

the likelihood of over fitting, such as k-

fold cross-validation. 

1.3.2 Feature extraction and selection 

techniques for thermochemistry datasets 

In thermochemistry datasets, feature 

extraction and selection approaches are 

crucial for locating the most pertinent and 

informative features that help to properly 

predict thermodynamic properties. These 

methods aid in lowering the number of 

dimensions in the data, enhancing model 

effectiveness, and preventing over fitting 

(Angulo, et al., 2022). The following list of 

frequent feature extraction and selection 

methods for thermochemistry datasets: 
 

i. Principal Component Analysis (PCA): A 

popular method for feature extraction is 

PCA. The initial features are changed into 

a fresh collection of uncorrelated 

variables (principal components) that 

fully account for the volatility in the data. 

PCA decreases the dimensionality of the 

data while maintaining the most crucial 

information by choosing a selection of the 

most important principle components 

(Velasco, et al., 2022). 

ii. Autoencoders: This class of neural 

networks is utilized for feature extraction 

and unsupervised learning. They are 

made to learn compressed versions of the 

input data, which are subsequently used 

as the basis for the features that are 

extracted. To find underlying structures 

and patterns in thermochemical data, 

autoencoders can be useful (Etim et al., 

2018). 

iii. Molecular Descriptors: Molecular 

descriptors are frequently utilized as 

features in thermochemistry datasets 

involving molecular systems. Chemical 

structures and characteristics, such as 

atom counts, bond lengths, and electrical 

properties, are represented numerically by 

molecular descriptors (Neumann, et al., 

2005). They are suitable characteristics 

for predicting thermodynamic properties 

because they offer useful information 

about the chemical make-up and 

molecular structure of molecules (Ori et 

al., 2024). 

iv. Reaction fingerprinting: Reaction 

fingerprints can be utilized as 

characteristics for datasets including 

chemical reactions. In a binary format, 

reaction fingerprints represent the 

presence or absence of particular 

reactants, products, and intermediates. 

They encapsulate the essence of the 

reaction and can be used to pinpoint 

important elements that have an impact 

on the process's thermodynamics 

(Madden, et al., 2002). 

v. Techniques based on information theory: 

For feature selection, information theory-

based techniques like mutual information 

and entropy can be applied. These 

methods assess how relevant and 

redundant features  related to the desired 

attribute. For model training, features 

with a high degree of relevance and little 

duplication are chosen (Giambagli, et al., 

2021). 

vi. Recursive Feature Elimination (RFE): 

RFE is a feature selection technique that 

operates by repeatedly eliminating the 

dataset's least significant features. It 

entails repeatedly training the ML model 

while excluding the least significant 

feature each time until the necessary 

number of features is obtained. The most 

important features for predicting 

thermodynamic properties are found via 

RFE. 

vii. Least Absolute Shrinkage and Selection 

Operator (LASSO): A regularization 

method known as LASSO can be used to 

both select features and shrink model 

parameters. It does feature selection by 

introducing a penalty term into the 

regression model that encourages some of 

the feature coefficients to be absolutely 

zero (Chowdhury, et al., 2021). 

viii. Feature selection based on correlation: 

The correlation between each feature and 

the desired thermodynamic attribute is 
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measured by correlation-based 

approaches. High correlation coefficient 

features are thought to be pertinent. 

The size, scope, and intended level of 

complexity of the ML model all influence 

the choice of feature extraction and 

selection approaches for the 

thermochemistry dataset. Researchers can 

improve the effectiveness and 

interpretability of ML models for 

predicting thermodynamic characteristics 

in chemical systems by successfully 

extracting and choosing pertinent features 

(Wei, et al., 2023). 
 

1.4 Property Prediction and Modelling 
 

1.4.1 Prediction of thermodynamic 

properties using machine learning 

techniques 

A hot topic in thermochemistry research is 

the prediction of thermodynamic 

properties using machine learning 

methods. For chemical systems, ML 

models may precisely estimate a range of 

thermodynamic characteristics, including 

enthalpy, entropy, heat capacity, and free 

energy (Etim, et al., 2020). Here are some 

pertinent instances of the application of 

ML approaches to the prediction of 

thermodynamic property: 

i. Prediction for Enthalpy of Formation: A 

key thermodynamic property used to 

evaluate the stability and energy content 

of chemical compounds is the standard 

enthalpy of formation (H°f). A collection 

of experimentally observed enthalpies of 

formation for distinct chemicals can be 

used to train ML models like support 

vector machines (SVM), random forests, 

or neural networks (Leonard, et al., 

2023). The trained model may then 

accurately predict the production 

enthalpies of novel molecules. For 

instance, the enthalpy of formation for a 

newly synthesized material can be 

predicted using an SVM model trained on 

a dataset of known H°f values, assisting 

in the discovery and design of new 

materials. 

ii. Reaction energy prediction: The energy 

changes resulting from chemical 

reactions can be predicted using ML 

approaches. Regression models like 

random forests or gradient boosting can 

estimate the enthalpy change (ΔH) or the 

Gibbs free energy change (ΔG) of a 

reaction by using chemical descriptors 

and reaction fingerprints as features. 

These models are used in chemical 

synthesis for comprehending reaction 

feasibility and maximizing reaction 

conditions (Ding, et al., 2021). 

iii. Prediction of solubility: Machine learning 

(ML) models can be trained on 

experimental solubility data to predict the 

solubility of chemical compounds in 

various solvents or environments. For 

instance, a neural network can be trained 

to learn the connections between 

solubility and chemical characteristics to 

predict how a compound's solubility 

would change with temperature or solvent 

polarity (Wu, et al., 2021). 

iv. Vapour Pressure Prediction: A crucial 

thermodynamic factor affecting the 

volatility and phase behaviour of 

substances is vapour pressure. To predict 

the vapour pressure of various substances 

at various temperatures, machine learning 

(ML) models, such as support vector 

regression or decision trees, can be 

trained on experimental vapour pressure 

data. These models are useful for 

developing vapour-liquid equilibrium 

processes and comprehending the 

behaviour of volatile substances. 

v. Heat Capacity Prediction: ML methods, 

such as deep neural networks and 

Gaussian process regression, can be used 

to predict heat capacity at various 

temperatures.  To estimate heat capacities 

for compounds for which there are 

insufficient experimental data, models 

can be trained on heat capacity data 

obtained using calorimetric techniques 

(Longqiang, et al., 2023). 

vi. Phase diagram prediction: For multi-

component systems, phase diagrams can 

be created using ML models. The phase 
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borders and coexistence zones in phase 

diagrams can be predicted by ML models 

using Gibbs free energy data and taking 

into account phase stability requirements 

(Osigbemhe, et al., 2022; 2022a). 

vii. Drug Design Thermodynamic Property 

Prediction: By foreseeing 

thermodynamic features important to 

drug-target interactions, machine 

learning (ML) plays a significant role in 

drug design (Cheng, et al., 2023). 

Models that have been developed using 

data on solubility and known drug-

target binding affinities can help 

identify new drug candidates with 

advantageous thermodynamic profiles. 

Employing machine learning 

approaches to predict thermodynamic 

parameters has considerable efficiency 

and accuracy benefits. These models 

help progress a variety of scientific and 

commercial applications by enabling 

researchers to explore enormous 

chemical regions, create new materials 

and reactions, and optimize chemical 

processes (Zaw-Myo, et al., 2023). 

 

 
 

Fig. 3: diagram describing the machine learning training model (Zaw-Myo, et al., 2023). 
 

1.4.2 Quantitative structure-property 

relationship modelling for thermochemical 

data 

A potent method for connecting the structural 

features of chemical compounds to their 

thermodynamic properties is quantitative 

structure-property relationship (QSPR) 

modelling. The foundation of QSPR models 

is the idea that a molecule's molecular 

structure and make-up dictate its 

physicochemical characteristics. QSPR 

models can precisely predict a variety of 

thermodynamic characteristics for novel 

chemical compounds using a dataset of 

molecular descriptors and associated 

thermodynamic property values (Weimin, et 

al., 2023). A few pertinent examples of QSPR 

modelling for thermochemical data are 

provided below: 

i. Prediction of Enthalpy of Formation: 

QSPR models can be created to predict 

the typical enthalpy of formation (H°f) of 

chemical compounds. The chemical 

characteristics (such as atomic 

composition, bond lengths, and 

electronegativity) and experimental H°f 

values for a variety of compounds are 

included in the dataset used to train the 

model. The QSPR model can predict the 

enthalpy of formation for novel 

compounds by learning the correlations 

between molecular characteristics and 

H°f (Etim, et al., 2022). 
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ii. Theoretical Heat Capacity: The heat 

capacity (Cp) of chemical compounds at 

various temperatures can also be 

predicted using QSPR models. Molecular 

descriptors and experimentally 

determined heat capacity values for 

various substances over a variety of 

temperatures make up the dataset used to 

train the model (Minjie, et al., 2022). The 

QSPR model then discovers the 

relationships between Cp and molecular 

characteristics. 

iii. Boiling point prediction: The QSPR 

modelling technique can be used to 

estimate the boiling points of organic 

molecules. The dataset contains 

empirically determined boiling points and 

chemical characteristics for a wide range 

of substances. The QSPR model can 

predict the boiling points of novel 

compounds because it learns the 

correlations between molecular 

characteristics and boiling points (Guella, 

et al., 2015). 

iv. Prediction of Solubility: Foretelling a 

chemical compound's solubility in 

multiple solvents, QSPR models are 

useful. The chemical descriptors and 

experimentally determined solubility 

values for various substances in various 

solvents make up the dataset utilized for 

model training. The QSPR model can 

predict the solubility of novel compounds 

in certain solvents by learning the 

correlations between chemical 

characteristics and solubility (Tu, et al., 

2012). 

v. Vapour Pressure Prediction: At various 

temperatures, chemical compounds' 

vapour pressures can be predicted using 

QSPR models. Molecular descriptors and 

experimentally determined vapour 

pressure values for different compounds 

are included in the dataset used to train the 

model. The QSPR model can calculate the 

vapour pressure for new compounds at 

various temperatures because it learns the 

relationships between molecular 

characteristics and vapour pressure 

(Weili, et al., 2010). 

vi. Prediction for the Partition Coefficient 

(LogP): The partition coefficient (LogP), 

a metric of a compound's lipophilicity, 

can be predicted by QSPR models. The 

dataset comprises experimentally 

determined LogP values and chemical 

characteristics for a wide range of 

substances. The QSPR model can 

estimate the LogP values for novel 

compounds because it learns the 

correlations between molecular 

characteristics and LogP. 

A useful approach for predicting different 

thermodynamic properties based on molecule 

structures and descriptors is QSPR modelling 

for thermochemical data. These models give 

scientists the tools they need to efficiently 

explore the chemical universe, create novel 

molecules with specified thermodynamic 

features, and enhance chemical reactions for 

a variety of uses (Weili, et al., 2009). 

Thermochemistry research has made strides 

thanks to the effective method known as 

QSPR modelling, which has applications in 

many different areas of science and industry.  
 

2.0 Machine learning in predicting 

reaction energies, enthalpies, and free 

energies 
 

In thermochemistry, reaction energies, 

enthalpies, and free energies are all predicted 

using machine learning (ML) approaches. 

These ML models assess the energy changes 

brought on by chemical processes by utilizing 

molecular descriptors, reaction fingerprints, 

and other pertinent information. Examples of 

how machine learning can be used to predict 

reaction energies, enthalpies, and free 

energies include the following: 
 

1. Reaction energy prediction: A collection 

containing experimentally determined or 

computed quantum chemical reaction 

energies can be used to train machine 

learning (ML) models such kernel ridge 

regression, random forests, or support 

vector regression. The dataset includes 

reaction fingerprints, related reaction 

energies, and molecular descriptors. The 

ML model can predict the energy changes 
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(E) of novel chemical reactions since it 

learns the correlations between the 

characteristics and reaction energies. For 

example, a dataset of reaction energies for 

a number of organic reactions is used to 

build a random forest regression model 

(Hong, et al., 2007). The link between 

molecular descriptors, reaction 

fingerprints, and reaction energies is 

learned by the model. As a result, the 

trained model can predict the energy 

changes for novel reactions, assisting in 

the design and optimization of reactions. 

2. Enthalpy Change Prediction: The enthalpy 

change (H) of chemical reactions can be 

predicted using ML approaches like 

gradient boosting or neural networks. For 

a wide range of reactions, the collection 

includes chemical descriptors, reaction 

fingerprints, and experimentally measured 

or DFT-calculated enthalpies (Palomba, et 

al., 2012). The ML model can precisely 

estimate the enthalpy change for novel 

reactions after learning the patterns in the 

data. For example, a dataset of reaction 

energies for several organic reactions is 

used to build a random forest regression 

model. The link between molecular 

descriptors, reaction fingerprints, and 

reaction energies is learned by the model. 

As a result, the trained model can predict 

the energy changes for novel reactions, 

assisting in the design and optimization of 

reactions (Etim, et al., 2022a). 

3. Enthalpy Change Prediction: The enthalpy 

change (H) of chemical reactions can be 

predicted using ML approaches like 

gradient boosting or neural networks. For 

a wide range of reactions, the collection 

includes chemical descriptors, reaction 

fingerprints, and experimentally measured 

or DFT-calculated enthalpies. The ML 

model can precisely estimate the enthalpy 

change for novel reactions after learning 

the patterns in the data. As an illustration, 

a dataset of Gibbs free energy changes for 

a variety of chemical reactions is used to 

build a Gaussian process regression 

model. The link between molecular 

characteristics, reaction fingerprints, and 

Gibbs free energies is taught to the model. 

The model can then predict the changes in 

free energy for novel reactions, assisting 

thermodynamic analyses and reaction 

enhancement (Rabbani, et al., 2021). 

Thermochemical reaction energies, 

enthalpies, and free energies may all be 

predicted using machine learning. These ML 

models make it possible to develop new 

compounds and processes as well as to 

optimize reactions and efficiently explore 

chemical space. ML approaches help advance 

our understanding of how energy changes in 

chemical systems and spur innovation in a 

variety of scientific and industrial fields by 

utilizing pertinent features and training on a 

variety of datasets. 
 

2.1 Database Development and Exploration 
 

Building and improving thermochemical 

databases with machine learning can 

significantly increase their breadth, accuracy, 

and usability. For scientists, engineers, and 

researchers working in a variety of disciplines 

such as material science,  medicine and 

energy, thermochemical databases are 

essential tools. Data curation, prediction, and 

optimization can be aided by ML approaches, 

creating better databases with insightful 

information (Menke, et al., 2021). The 

following are some methods for developing 

and improving thermochemical databases 

using machine learning: 

i. Data cleaning and Curation: Data on 

thermochemistry from multiple sources 

can be cleaned and curated with the use of 

machine learning methods. ML models 

can manage missing values, identify 

errors, and eliminate outliers from the data 

automatically, guaranteeing that the 

database contains accurate and trustworthy 

data (Edet and Samuel 2023). 

ii. Data Fusion and Integration: ML 

approaches can be used to combine data 

from many sources and in a variety of 

formats. Utilizing information from many 

researches and combining experimental 

and theoretical data, data fusion techniques 

can ensure a more complete depiction of 
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thermochemical parameters (Maji, et al., 

2015). 

iii. Data imputation and predictive modelling: 

Based on previously collected 

thermochemical data, machine learning 

models, such as random forests, neural 

networks, or Gaussian processes, can be 

trained to predict missing values or 

calculate the thermodynamic properties of 

novel substances or reactions. This 

predictive feature enables data imputation, 

expanding the database's coverage and 

filling up any gaps. 

iv. Reaction and Property Prediction: For 

unstudied chemical systems, ML models 

can be created to predict reaction results 

and thermodynamic properties. ML can 

predict reaction energies, enthalpies, and 

free energies for a variety of chemical 

reactions by using molecular descriptors, 

reaction fingerprints, and other pertinent 

information, enhancing the database with 

useful predictions (Kong,  and  Yu, 2018). 

v. Active Learning: In active learning 

contexts, machine learning can be utilized 

to direct the choice of fresh data points for 

verification through experimentation. Data 

collection is made more efficient and the 

amount of experimental work necessary 

for database improvement is decreased 

when ML models are used to determine 

which samples to include in the database 

are the most informative. 

vi. Engineering features: ML methods can 

help in locating pertinent molecular 

descriptors and reaction fingerprints that 

significantly influence thermochemical 

characteristics. By creating more 

informative and discriminative features, 

feature engineering can improve the 

database's representation of chemical 

systems and give ML models more useful 

information (Kang, et al., 2003). 

vii. Design and optimization: Machine 

learning can be used to build novel 

compounds with desired thermodynamic 

properties and optimize chemical 

processes. Based on the available 

thermochemical data, ML algorithms can 

look for the best reaction conditions or 

materials, improving performance and 

efficiency. 

viii. Estimating Uncertainty: To show how 

confidently the predictions were made, 

ML models can offer estimates of 

uncertainty for projected thermodynamic 

parameters. This uncertainty estimation 

improves the database's dependability and 

enables users to use the data to make wise 

judgments (Ertl, et al., 2019). 

Thermochemical databases can be improved 

and built with the aid of machine learning, 

allowing researchers to produce more 

thorough and trustworthy resources for the 

scientific community. These improved 

databases speed up and improve the accuracy 

of predictions, help with the identification of 

novel substances and reactions, and hasten 

technological advancement in  some 

thermochemistry-related sectors (Rasmussen, 

2004). One of the most important areas of 

thermochemistry study is the creation of 

machine learning prediction models for heat 

capacity, enthalpies of formation, and other 

thermodynamic parameters. The ability to 

precisely estimate thermodynamic 

parameters provided by ML approaches 

empowers researchers to investigate 

enormous chemical regions, enhance 

processes, and create novel materials. Let's 

see how these prediction models were 

created: 

 

i. Collection of data and preprocessing: 

The collection of a comprehensive and 

top-notch thermochemical dataset is the 

initial step as shown in  Fig. 4. For a 

variety of chemical substances and 

reactions, this dataset should include 

pertinent molecular descriptors, 

reaction fingerprints, and the 

appropriate thermodynamic property 

values (such as heat capacities, 

enthalpies of formation). By addressing 

missing values, eliminating outliers, 

and guaranteeing consistency in the 

representation of features, the data 

should be preprocessed (Pedregosa, et 

al., 2012). 
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ii. Feature selection strategies aid in 

locating the most pertinent molecular 

descriptors and reaction fingerprints 

that have a major impact on the desired 

thermodynamic parameters. By 

developing new features or 

transformations, feature engineering 

helps ML models perform better and 

better at representing chemical systems 

(Suwarno, et al., 2022). 

iii. Model selection: Prediction models can 

be created using a variety of ML 

methods. Support vector machines 

(SVM), random forests, gradient 

boosting, and neural networks are 

examples of frequently used methods. 

The intricacy of the data and the 

specific thermodynamic property being 

predicted determine which model is 

used (Eqwuatu, et al., 2023). 

iv. Model training: The dataset is divided 

into training and testing sets. The ML 

model is trained using the training set, 

and its performance is assessed using 

the testing set. To reduce prediction 

errors, the ML model tunes its internal 

parameters during training to learn the 

correlations between the input features 

and the target thermodynamic 

properties (Sarkar, et al., 2021). 

v. Validation and evaluation of the model: 

The testing set is used to evaluate the 

trained model's generalization 

capability. The precision with which 

the model predicts thermodynamic 

properties is measured using a variety 

of metrics, including mean squared 

error (MSE), mean absolute error 

(MAE), and coefficient of 

determination (R-squared). 

vi. Tuning of hyperparameters: To attain 

the optimum performance, 

hyperparameters in ML models 

frequently need to be tuned. The best 

settings for the model are found by 

exploring various combinations of 

hyperparameters using methods like 

grid search or random search 

(Finkelmann, et al., 2016). 

vii. Cross-Validation: Cross-validation 

methods, such as k-fold cross-

validation, are used to confirm the 

model's robustness further. Cross-

validation minimizes overfitting and 

aids in estimating the model's 

performance on new data. 

viii. Model Use and Deployment: The 

thermodynamic properties of new 

chemicals or reactions can be predicted 

using the ML model after it has been 

created and validated. To acquire the 

estimated heat capacities, enthalpies of 

formation, or other thermodynamic 

parameters, users can enter molecular 

descriptors and reaction fingerprints 

(Etim, et al., 2022b, 2022c). 

ix. Model Interpretability: Depending on 

the application, efforts can be taken to 

understand the key factors impacting 

the thermodynamic properties and 

comprehend the ML model's 

predictions. Tools like feature 

importance analysis can shed light on 

the factors that underlie thermodynamic 

behaviour (Xiangyu, et al., 2019). 

These processes enable researchers to create 

machine-learning prediction models for heat 

capacities, enthalpies of formation, and other 

thermodynamic features. In numerous fields 

of science and industry, these models aid in 

the improvement of thermochemistry 

research, material discovery, and reaction 

optimization (Onen, et al., 2017). 
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 Fig. 4: Stages in machine learning prediction models (Xiangyu, et al., 2019) 
 

 

 2.2  Integration of thermochemical 

databases for rapid access and analysis of 

thermochemical data 

In terms of quick access to and interpretation 

of thermochemical data, integrating machine 

learning techniques into thermochemical 

databases offers  several benefits. It improves 

the databases' usefulness and usability, 

making it possible for researchers to quickly 

access, investigate, and analyze chemical 

systems' thermodynamic properties (Stein,, et 

al., 2019). We go into great detail about how 

machine learning methods are incorporated 

into thermochemical databases below. 

i. Data cleaning and curation: The 

database's thermochemical data can be 

curated and cleaned using machine 

learning methods. These methods are 

capable of handling missing numbers, 

outlier removal, and error detection and 

correction automatically. By utilizing 

ML approaches, the database's quality 

and dependability are increased, 

guaranteeing that researchers have 

access to precise and reliable 

thermochemical data (Osigbemhe, et al., 

2022a; 2022b). 

ii. Predictive Models for Missing Data: 

Machine learning models, including 

neural networks or regression, can be 

trained using the database's existing 

thermochemical data. The missing 

thermodynamic property values for 

compounds or reactions with little to no 

experimental data can then be estimated 

using these predictive models. The 

database is expanded and researchers 

have access to a wider variety of 

thermochemical data via imputed 

missing values (Onen, et al., 2004). 

iii. Fusion and Integration of Data: Data 

from many sources can be combined and 

integrated using machine learning into 

the thermochemical database. The 

seamless integration of experimental and 

computational data is made possible by 

ML approaches' ability to handle a 

variety of formats, data structures, and 

units. Data from many studies are 

combined to create a more thorough and 

varied database (Dai, et al., 2019). 

iv. Effective Search and Retrieval: Machine 

learning methods can enhance the 

database's search and retrieval 

capabilities. ML models can improve the 

retrieval of thermochemical data and 

prioritize relevant search results by 

learning from user interactions. This 

improves user convenience and cuts 

down on the time needed to get particular 
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thermodynamic parameters (Etim, et al., 

2016). 

v. Predictability analysis: The database can 

use machine learning models to provide 

predictive analysis for different 

thermodynamic parameters. These 

models enable the quick screening of 

chemical systems and the study of 

chemical spaces by allowing researchers 

to predict thermodynamic values for new 

compounds or processes. 

vi. Interactive Data Visualization: Machine 

learning methods can improve 

thermochemical database data 

visualization. Researchers can 

investigate the connections between 

chemical characteristics, reaction 

fingerprints, and thermodynamic 

variables using sophisticated ML-based 

visualization tools. Plots and visuals that 

can be interacted with promote data-

driven insights and a deeper knowledge 

of the data (Jochen, et al., 2019). 

vii. Continuous learning and real-time 

updates: As fresh data becomes 

available, machine learning models in 

the database can continuously learn and 

update. Researchers can access the most 

recent thermochemical data because to 

the database's ability to stay current with 

the most recent experimental and 

computational data (Edet and Samuel, 

2024). 

viii. Active Learning and Data Suggestion: 

Within a database, active learning can be 

facilitated by machine learning. To 

increase data coverage and fill in any 

gaps in the database, the ML model can 

recommend further tests or calculations. 

The database can expand and improve its 

information more quickly by 

automatically choosing additional data 

points for validation (Robert, et al., 

2012). 

ix. Computational tool integration: The 

computational tools used by researchers 

can easily incorporate machine learning 

models. During computer simulations, 

this integration permits on-the-fly 

predictions of thermodynamic 

parameters, expediting the process and 

granting quick access to pertinent 

thermochemical data. 

 

2.3 Reaction network analysis and kinectics 

2.3.1 Application of machine learning 

algorithms for reaction network analysis and 

prediction 

In computational chemistry and chemical 

engineering, the use of machine learning 

algorithms for reaction network analysis and 

prediction is a potent strategy. Complex 

reaction networks may be understood, 

outcomes of reactions can be predicted, and 

reaction conditions can be optimized with the 

help of ML approaches (Shinggu, et al., 

2023). Here are a few significant uses of 

machine learning in this situation: 

i. Reaction Pathway Prediction: To predict 

reaction pathways for particular starting 

materials, machine learning algorithms 

can be trained using reaction databases, 

such as graph-based models or recurrent 

neural networks. ML models can predict 

the most likely reaction sequences by 

examining the interactions between 

reactants, intermediates, and products, 

which helps with comprehending 

complex reaction mechanisms (Qianyi, 

et al., 2009). 

ii. Reaction Rate Prediction: For a variety 

of chemical reactions, ML approaches 

can be used to predict reaction rates and 

rate constants. Using experimental or 

quantum chemical data, models can be 

trained to predict reaction rates at various 

temperatures and pressures. 

Understanding reaction kinetics and 

improving reaction conditions depend on 

accurate rate estimates (Ekpan et al., 

2024). 

iii. Multi-Step Reaction Product Prediction: 

Given the beginning ingredients and 

reaction conditions, machine learning 

models, particularly sequence-to-

sequence models or transformer-based 

architectures, can predict the end 

products of multi-step reactions. 

Accurate product prediction is made 

possible by these models, which make 
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use of sizable reaction datasets and learn 

the transitions between chemical 

structures (John & Ryszard 2009). 

iv. Reaction Optimization: To optimize 

reaction conditions for desired results, 

ML algorithms like Bayesian 

optimization or reinforcement learning 

can be used. These models can direct the 

search for the best reaction parameters, 

such as temperature, pressure, and 

catalysts, to produce improved yields and 

selectivity by learning from experimental 

data or quantum chemical simulations 

(Yang, 2020). 

v. Designing a catalyst: By foreseeing the 

activity and selectivity of catalysts for 

particular processes, machine learning 

approaches can aid in the design of 

catalysts. To find potential candidates for 

catalytic processes, models can be 

trained on data from catalytic reactions 

and descriptors of catalyst qualities, 

which eliminates the need for laborious 

experimental screening. 

vi. Mechanism Clarification: By using 

experimental data, ML models can help 

clarify response mechanisms. ML 

algorithms may infer possible reaction 

paths and mechanistic stages by 

examining kinetic data, reaction 

intermediates, and product distributions, 

offering insights into the underlying 

chemistry (Jiménez-Martínez, et al., 

2022). 

vii. Prediction of Adverse Reactions and By-

products: The occurrence of side effects 

and by-products in chemical reactions 

can be predicted by machine learning. 

These predictions assist chemists in 

locating probable impurities and 

formulating plans to reduce unfavourable 

side effects during synthesis (Francis-

Dominic et al., 2024). 

viii. Enantioselectivity Prediction: The 

enantioselectivity of chiral catalysts or 

processes can be predicted using ML 

models. ML algorithms can calculate the 

enantiomeric excess of products by 

learning from data on chiral ligands and 

substrates, aiding in the development of 

asymmetric processes (Yaroslava, et al., 

2014) 

ix. Biochemical Pathway Analysis: ML 

algorithms in biochemistry are capable of 

analyzing intricate biochemical 

pathways like metabolic networks or 

enzyme-catalyzed reactions. These 

models aid in understanding cellular 

functions and foretelling how biological 

systems would behave (Saeed, et al., 

2013). 

Research in chemistry and chemical 

engineering can be sped up by using machine 

learning techniques for reaction network 

analysis and prediction. These models 

increase the effectiveness of reaction design, 

optimization, and mechanism elucidation, 

allowing scientists to decide more wisely and 

effectively explore the chemical space. 

 

2.3.2 Machine learning in determining 

reaction kinetics, rate constants, and 

activation energies 

The determination of reaction kinetics, rate 

constants, and activation energies in chemical 

reactions has shown tremendous promise 

when using machine learning (ML). 

Understanding reaction pathways, improving 

reaction conditions, and projecting reaction 

results all depend on these thermodynamic 

features. To create precise predictions, ML 

approaches can use experimental data, 

quantum chemical computations, and 

molecular descriptors. Here is how ML is 

used in this situation: 

i. Prediction for Reaction Rate: To predict 

reaction rates for novel reactions or 

situations, machine learning models can 

be trained on experimental reaction rate 

data. To estimate the reaction rate, these 

models take as inputs molecular 

descriptors, reaction circumstances, and 

other pertinent information. For 

example, regression models like random 

forest or neural networks are frequently 

employed in predicting the reaction rate 

in 3D porous media as shown in figure 

5.0 (Jahan, et al., 2013). 
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 Fig.5: schematic of the ML-based framework of 3D pore-scale Random Forests (RF), 

and Artifcial Neural Network (ANN) models (Jahan, et al., 2013) 

 

ii. Rate Constant Estimation: By analyzing 

experimental kinetic data, ML can 

calculate rate constants for chemical 

reactions. ML models can predict rate 

constants for new reactions or situations 

by learning from a wide set of reactions 

and their rate constants. The 

effectiveness and quickness of the 

reaction must be determined using this 

information (Mani, et al., 2012). 

iii. Predicted Activation Energy: A crucial 

thermodynamic factor that affects a 

reaction's pace is activation energy. To 

estimate activation energies, machine 

learning (ML) models can be trained on 

data from Arrhenius plots, which connect 

reaction rates to temperature. These 

models can be used to predict activation 

energies for various reactions and reveal 

information about how temperature 

affects the reaction. The highest-energy 

regions along the chemical route are 

called transition states, and they can be 

predicted using machine learning (ML) 

approaches. Understanding reaction 

mechanisms requires the prediction of 

transition states. Quantum chemical data 

can be used to train machine learning 

models to identify the structural 

characteristics and energy landscapes 

connected to transition states (Mani, et 

al., 2013). 

iv. Analysis of Reaction Mechanisms: ML 

models are capable of deciphering the 

workings of chemical reactions and 

pinpointing their crucial steps. These 

models can identify chemical 

intermediates and transition states by 

using graph-based models or recurrent 

neural networks, giving important 

information on reaction pathways. 

v. Kinetic Isotope Effect Prediction: By 

learning from experimental data 

including isotopically labelled reactants, 

machine learning (ML) can predict 

kinetic isotope effects (KIEs). KIEs offer 

details on the reaction mechanism and 

rate-determining step. Mechanistic 

studies are aided by the ability of ML 

models to estimate KIEs for various 

isotope substitutions (Tetyana, et al., 

2011). 

vi. Rate Constant QSPR Modelling: 

Chemical reaction rate constants can be 

predicted using quantitative structure-

property relationship (QSPR) models. 

These models estimate rate constants for 

new reactions by establishing links 

between the reaction's structure and its 

rate constant using molecular 

descriptors. 
 

2.4 Identification of reaction trends using 

machine learning 
 

In big datasets of chemical reactions, machine 

learning can be used to find and analyze 

reaction trends. These patterns offer 

insightful information about the variables 

affecting reaction outcomes, selectivities, and 

efficiency (Nikolay et al., 2011). To aid 

researchers in making decisions and directing 

experimental and computational efforts, 

machine learning (ML) models can reveal 

patterns and correlations between reaction 

circumstances, chemical structures, and 

thermodynamic parameters. How machine 

learning is used to spot reaction tendencies is 

as follows: 

i. Classification of Reactions: Reactions 

can be categorized using machine 
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learning models into many groups 

based on their types, such as 

substitution, addition, or elimination 

reactions. ML models may accurately 

categorize new reactions by learning 

the characteristics that distinguish 

various response classes through 

training on a labelled dataset 

(Anikina, et al., 2011). Structure-

Activity Relationships (SAR) can be 

established between reactants and 

reaction outcomes using machine 

learning approaches like regression 

models or neural networks. These 

models examine molecular descriptors 

and reaction fingerprints to pinpoint 

structural characteristics that result in 

the production of desired products or 

certain reaction pathways (Egwuatu et 

al., 2024). 

ii. Design and screening of catalysts: In 

the creation and screening of catalysts 

for particular reactions, machine 

learning is useful. The links between 

catalyst characteristics, reaction 

circumstances, and reaction results can 

be examined using ML models. ML 

algorithms can find potential catalyst 

candidates with desired selectivities or 

activity by learning from a variety of 

catalytic processes (Semenov, et al., 

2011). 

iii. Solvent Effects and Reaction 

Conditions: ML may show how the 

characteristics of the solvent and the 

circumstances of the reaction affect the 

results of the reaction. ML models can 

predict how these factors will affect 

reaction rates, selectivity, and yields by 

training on reaction data under various 

solvent and condition circumstances. 

iv. Predicting outcomes of Reactions: 

Based on reactant structures and 

reaction conditions, machine learning 

algorithms can predict the products or 

outcomes of chemical reactions. 

Understanding the reactivity and 

selectivity of various functional groups 

and reaction types is made easier thanks 

to these predictions (Mohammad, et al., 

2010). 

v. Mechanistic Understandings: 

Mechanistic insights into chemical 

reactions can be obtained using ML 

algorithms, particularly graph-based 

models or understandable models like 

decision trees. ML models can offer 

insight into the crucial steps and 

intermediates in reaction pathways by 

assessing the significance of various 

molecular characteristics (Mani, et al., 

2010). 
 

2.5 Advancements in machine learning for 

thermochemistry  
 

Thermochemistry research has greatly 

benefited from developments in machine 

learning, which have helped predict 

thermodynamic parameters, comprehend 

reaction pathways, and optimize chemical 

processes. Some significant developments 

include: 

i. Multiple datasets with big data: Large, 

varied, and carefully curated databases 

are now readily available, which has 

improved machine learning in 

thermochemistry. A large range of 

chemical compounds and processes are 

represented in these databases, 

allowing ML models to gain knowledge 

from a variety of thermodynamic 

features and trends (Etim, et al., 2017a; 

2017b). 

ii. Deep learning architectures: Many 

fields of science, including 

thermochemistry, have seen radical 

change as a result of the rise of deep 

learning. Convolutional neural 

networks (CNNs) and transformer-

based models are two examples of deep 

learning architectures that have 

impressively shown the ability to 

predict chemical characteristics and 

reaction outcomes more accurately and 

effectively (Etim, et al., 2021). 

iii. Reactive Learning:  ML models can use 

transfer learning approaches to use 

knowledge from one domain to perform 

better in a related area. Transfer 
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learning has been used in 

thermochemistry research to share 

knowledge among many chemical 

systems, hence lowering the demand 

for vast volumes of data for particular 

tasks. 

iv. Active Learning: ML models can 

actively choose the most instructive 

data points for training thanks to active 

learning methodologies, which 

optimize the learning process. Active 

learning has been used in 

thermochemistry to direct experiments 

or quantum chemical computations, 

lowering the amount of experimental 

work necessary to improve the 

database. 

v. Estimating uncertainty: Because 

computational calculations might be 

inaccurate and experimental data can be 

noisy, it is essential to quantify 

uncertainty in thermochemistry 

predictions. To increase the 

trustworthiness of outcomes, advanced 

ML techniques like Bayesian neural 

networks and Gaussian processes have 

been used to provide uncertainty 

estimates alongside predictions. 

vi. Reasonable AI: In scientific research, 

ML models' interpretability is crucial. 

Researchers in thermochemistry are 

increasingly employing explainable AI 

methods to determine why a model 

predicts certain outcomes (Onen, et al., 

2017). 

vii. Identification of Active Sites: 

Understanding reactivity and binding 

interactions in catalysis and drug design 

requires accurate identification of the 

active sites on catalysts or proteins.  o 

build effective catalysts and drug 

candidates, ML models have been used 

to predict active sites based on chemical 

characteristics. 

viii. Screening with high throughput: High-

throughput screening methods have 

combined machine learning to quickly 

explore broad chemical space and find 

interesting candidates for particular 

thermodynamic features or reaction 

outcomes. 

ix. Precision Machine Learning: Complex 

thermochemistry problems can be 

solved and quantum systems can be 

simulated by utilizing quantum 

machine learning techniques, such as 

quantum neural networks and 

vibrational quantum circuits (Etim, et 

al., 2017). 
 

3.0 Conclusion  
 

The analysis, prediction, and comprehension 

of thermodynamic parameters and chemical 

reactions by researchers have been 

revolutionized by machine learning (ML), 

which has emerged as a transformational 

force in thermochemistry. The blending of 

data-driven methodologies with conventional 

theoretical and experimental approaches has 

created new opportunities for chemical 

exploration, material discovery, reaction 

optimization, and the development of a 

profound understanding of complicated 

molecular interactions. Numerous uses of ML 

in thermochemistry have had a substantial 

impact on many areas of research, and as new, 

more sophisticated methods are created, their 

potential keeps expanding. The capacity of 

machine learning to predict thermodynamic 

parameters with high accuracy is one of the 

most important contributions of ML in 

thermochemistry. For a variety of chemical 

systems, ML models can estimate enthalpies, 

free energies, heat capacities, and other 

thermodynamic parameters. These models 

range from conventional regression 

approaches to cutting-edge deep learning 

architectures. These predicting tools are 

priceless for researchers because they give 

quick access to thermochemical data, 

particularly for substances with scant 

experimental evidence or when in-depth 

quantum chemical computations might not be 

possible. Additionally, thermochemical 

databases have grown and improved because 

to ML approaches. The reliability and 

completeness of thermochemical data 

repositories have increased thanks to machine 

learning (ML) through data integration, 
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cleaning, and imputation. Experimental 

efforts have been directed by active learning 

methodologies, which have effectively filled 

in data gaps and fueled the ongoing growth of 

these databases. The efficiency and precision 

of computational studies have been improved 

by the real-time thermodynamic property 

predictions made possible by the integration 

of ML-driven tools with computational 

software during simulations. Explainable AI 

methods have made ML predictions 

transparent, allowing researchers to decipher 

and believe in the underlying mechanisms 

generating the results. This interpretability is 

essential for directing additional 

experimental validations, discovering novel 

chemical insights, and encouraging 

multidisciplinary cooperation between ML 

specialists and domain-specific 

thermochemistry researchers. The difficulties 

in integrating and scaling these approaches to 

handle more challenging thermochemistry 

problems increase as machine learning (ML) 

continues to develop. Research is still being 

done on how to handle scarce or noisy data, 

properly handle ML models across a variety 

of chemical domains, and measure 

uncertainty in predictions. 

A new era of chemistry research and 

discovery has begun because of the 

combination of machine learning and 

thermochemistry. Our knowledge of 

chemical phenomena has increased as a result 

of the interaction between data-driven 

methods and conventional techniques. This 

has also sped up the creation of novel 

materials and paved the way for 

environmentally friendly and effective 

chemical processes. The subject of 

thermochemistry stands to gain from 

transformational improvements as 

researchers continue to harness the power of 

ML, stimulating innovation and propelling 

development across numerous scientific and 

industrial applications. As machine learning 

solidifies its position as a crucial tool for 

directing the course of thermochemistry 

research, the future is filled with promise. 
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