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Abstract:  This research work is born out of the 

desire to design an effective synchronization 

scheme that could give a better understanding 

of the coordination of multiple processes and 

effective communication among various 

components of a complex system or between 

different groups of complex systems  As a 

result, this research work presents 

combination-difference synchronization of 

fractional order chaotic (FOC) systems with 

parameter mismatches evolving from different 

initial conditions. Using the FOC Duffing 

oscillators and FOC financial systems as a 

paradigm, the backstepping technique is 

applied to design control laws for the 

achievement of combination-difference 

synchronization. These control laws enable the 

differences between the sums of the variables 

of the drive systems and differences of the 

variables of the response systems to converge 

to zero which confirms the achievement of 

combination difference synchronization. 

Numerical simulations provided confirm the 

effectiveness of the combination-difference 

synchronization technique. This result could be 

used to explain different interactions among 

particles and neurons of the same or different 

dynamical behaviour 
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1.0 Introduction 
 

Fractional order systems are a generalized 

form of integer order systems. Due to 

memory and other hereditary properties, 

fractional order systems describe the 

dynamic behaviour of real-life systems 

more accurately than the integer order 

model (Bagley and Torvik, 1984; Bagley, 

1998; Podlubny, 1999; Hilifer, 2001). For 

instance, the mathematical theory of 

fractional order differential equation has 

been proven as an effective theory for the 

analysis of complex dynamic behaviour in 
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physical, biological, and chemical systems 

(Gerhards and Schlerf, 2018; Huang et al., 

2018; Pandey et al., 2022). It is worthy of 

note that coupled fractional order systems 

give better insight into understanding 

complex dynamical behaviour exhibited by 

natural and artificial systems. One of the 

most investigated coupled dynamical 

behaviour of FOC systems is 

synchronization, this is a result of its 

potential applications to several life 

situations ( Lei and Zheng, 2015; Bettayeb 

et al., 2017;  Rajagopal et al.,  2020; Batiha 

et al., 2021; Rahman et al., 2021 ). 

The quest for synchronization that could 

give a better explanation of interaction 

among different groups of interconnected 

complex dynamical systems with parameter 

mismatch motivated this research work.  As 

a result, a new synchronization scheme 

called combination-difference 

synchronization has been developed to 

synchronize to groups of chaotic systems 

with parameters mismatched. This new 

synchronization scheme is meant to give a 

better understanding of synchronization 

phenomena in real-life systems. This new 

synchronization developed for fraction 

order systems is reported here for the first 

time to the best of our knowledge. So, this 

paper aims to investigate of combination-

difference synchronization behaviour of 

coupled fractional order with parameter 

mismatch evolving from different initial 

conditions systems via a nonlinear control 

technique. 

Meanwhile, the synchronization of nonlinear 

dynamical systems has been fully developed 

due to its applications in various fields of study. 

Several methods of synchronization of 

nonlinear dynamical systems have been 

investigated such as linear feedback, nonlinear 

feedback, active control methods, backstepping 

technique, optimal control, finite-time, and 

others (Razminia and Baleanu, 2013; Li and 

Chen, 2014; Wu and Baleanu, 2014; 

Golmankhaneh et al., 2015; Boulkroune et al., 

2016; Maheri and Arifin, 2016; Nourian and  

Balochian, 2016;  Li and  Zhang, 2016; Shao et 

al., 2016; Soukkou et al., 2016;  Jajarmi et al., 

2017; Huang et al., 2018; Akif et al., 2021). 

Backstepping has been proven to be very 

effective in the synchronization of identical 

systems, non-identical systems, and systems of 

different dimensions (Ojo et al., 2013; Ogunjo 

et al., 2017; Shen et al, 2019: Dongmo et al., 

2022;  Majdoul et al.,2022 ). 

The backstepping control technique is chosen 

as the synchronization method as a result of its 

excellent performance in synchronization of 

nonlinear dynamical systems. Many 

synchronization schemes such as combination 

synchronization, combination-combination 

synchronization, difference synchronization 

and difference-difference have been 

investigated (Korsch et al ., 2007; Runzi et al., 

2011; Runzi and Yinglan, 2012; Runzi and 

Yinglan, 2012; Sun et al., 2013; Sun et al., 

2013; Ojo et al., 2015; Ojo et al., 2016; Ojo et 

al., 2022).  

Most of these synchronization schemes have 

been reported on integer order systems but only 

a few reports are available on fractional order 

systems particularly, FOC systems with 

parameter mismatch. It should be noted that 

parameter mismatch is an important factor to be 

considered in synchronization since no two or 

more systems can be the same. Therefore, 

parameter mismatch synchronization is 

challenging and realistic as a result of 

differences in system parameters. Hence, the 

synchronization result of parameter mismatch 

systems gives a better understanding of the 

practical implementation of synchronization. 

This research work reports combination-

difference synchronization of fraction order 

chaotic systems with parameter mismatch for 

the first time to the best of our knowledge. 

The paper is organized as follows: Section 2 

provides a brief system description. Sections 3 

and 4 deal with combination-difference 

synchronization of duffing oscillators and 



Communication in Physical Sciences, 2024, 11(1):01-13 3 

 

 

financial systems with parameter mismatch 

respectively. Section 5 concludes the research 

paper. 
 

2.0  Combination-Difference 

Synchronization Scheme 
 

Combination-difference synchronization for 

arbitrary two drive and response systems are 

described using the nonlinear dynamical 

systems in equations (1)- (4) below. The drive 

systems are 

 𝐷𝑞𝑥 = 𝐴𝑥 + 𝑓(𝑥)                                        (1) 

 𝐷𝑞𝑦 = 𝐴𝑦 + 𝑓(𝑦)                                        (2) 

   The response nonlinear systems are 

 𝐷𝑞𝑧 = 𝐴′𝓏 + 𝑓(𝓏) + 𝑢(𝑥, 𝑦, 𝓏, 𝓌)          (3) 

 𝐷𝑞𝓌 = 𝐵′𝓌 + 𝑓(𝓌) + 𝑣(𝑥, 𝑦, 𝓏, 𝓌)   (4) 
 

where 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛)𝑇 ∈ ℜ𝑚, 𝑦 =
(𝑦1, 𝑦, . . . , 𝑦𝑛)𝑇 ∈ ℜ𝑛, 𝓏 = (𝓏1, 𝓏, . . . , 𝓏𝑛)𝑇 ∈
ℜ𝑝 and 𝓌 = (𝓌1, 𝓌2, . . . , 𝓌𝑛)𝑇 ∈ ℜ𝑞 are the 

state vectors of system (1)-(4) respectively. 𝐴 ∈
ℜ𝑚 × ℜ𝑚, 𝐵 ∈ ℜ𝑛 × ℜ𝑛, 𝐴′ ∈ ℜ𝑝 × ℜ𝑝, 𝐵′ ∈
ℜ𝑞 × ℜ𝑞. 𝑓(𝑥), 𝑓(𝑦), 𝑓(𝓏), 𝑓(𝓌) are 

nonlinear functions of the systems which are 

continuous and differentiable. The control 

functions to be designed that would enable 

combination-synchronization are 

𝑢(𝑥, 𝑦, 𝓏, 𝓌) and 𝑣(𝑥, 𝑦, 𝓏, 𝓌). 
 

Definition 1: The order of the drive and the 

response systems are the same as assumed in 

this section. There exists error e such that 𝑒 =
Lim
𝑡→∞

  ‖(𝓌 + 𝓏) − (𝑥 − 𝑦)‖ = 0, Then, the 

drive systems (1), (2) and the response systems 

(3), and (4) achieve combination-difference 

synchronization. 
 

3.0  Brief system description 

3.1  Description of Duffing Oscillator 
 

The fractional order Duffing model gives a 

good description of mechanical systems. The 

model of fractional order Duffing considered in 

this research work depends on the nature of 

nonlinearity, damping term, external excitation 

and linear term. This fractional order duffing 

exhibits different responses such as sustained 

single-period oscillations, multiple-period 

oscillations, and chaos. Applications of the 

Duffing equations include modelling of 

harmonically excited spring equations with 

nonlinear restoring force; suspended mass on a 

parallel combination of dashpot; and equation 

of rolling ships (Runzi and Yinglan, 2012; 

Runzi and Yinglan, 2012; Sun et al., 2013 ). 

The model used in this paper is described 

mathematically as follows 

𝐷𝑞𝑥1 = 𝑥2         
𝐷𝑞𝑥2  = −𝑏𝑥2 − 𝛼𝑥1 − 𝛽𝑥1

3 + 𝑓            (5) 

where 𝑞 is the order of derivative which is 

between 0 < 𝑞 < 1. 𝑓 is the amplitude of 

the forcing variable, 𝜔 is the frequency of the 

forcing term, 𝛽 is the coefficient of the 

nonlinear term, 𝑏 is the amplitude of the 

damping term and 𝛼 is the coefficient of the 

linear term. The phase portrait of the fractional 

is shown in Fig. 1. 

 

 
Fig.  1: The phase portrait of the fractional 

order Duffing for 𝒃 = 𝟎. 𝟎𝟏, 𝜶 = −𝟎. 𝟓, 𝜷 =
𝟏. 𝟎, 𝝎 = 𝟎. 𝟕𝟗, 𝒒𝟏 = 𝟎. 𝟗𝟖, 𝒒𝟐 = 𝟎. 𝟗𝟖. 
 

3.2 Description of financial system 
 

The nonlinear dynamical system theory has 

been applied to solve some complex problems 

in finance, stock market, and economics which 

arise from complicated interaction between 

several market and socio-economic variables. 

A detailed description of the FOC financial 

system can be found in (Sun et al., 2013). The 

fractional order model of the financial system 
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used in this paper is represented by the 

equations below.   

𝐷𝑞𝑥 = 𝓏 + (𝑦 − 𝑎)𝑥                                          
𝐷𝑞𝑦 = 1 − 𝑏𝑦 − 𝑥2                                         

 

𝐷𝑞𝓏
= −𝑥 − 𝑐𝓏                                                       (6) 

The system describes the time variation of the 

interest 𝑥, investment 𝑦, and price index 𝓏. The 

parameters 𝑎, 𝑏, and 𝑐 are the saving amount, 

the cost per unit investment, and the elasticity 

of demand of the market. The phase portrait of 

the fractional order financial system is 

presented in Fig. 2. 

 
Fig.  2: The phase portrait of the fractional 

order financial system 𝒂 = 𝟎. 𝟑, 𝒃 = 𝟎. 𝟏, 

𝒄 = 𝟏. 𝟎, 𝒒𝟏 = 𝟎. 𝟗, 𝒒𝟐 = 𝟎. 𝟗, 𝒒𝟑 = 𝟎. 𝟗. 

 

4.0  Combination-Difference Synchronization of Fractional Order Duffing 

Oscillators with Parameter Mismatch 
 

The drive nonlinear duffing systems are as follows 

                                      𝐷𝑞𝑥1 = 𝑥2                                                                   
                                                 𝐷𝑞𝑥2 = −𝑏𝑥2 − 𝛼𝑥1 + 𝑓1                                                               
                                                           𝐷𝑞𝑥3 = 𝑥4                                                                   
                                       𝐷𝑞𝑥4 = −𝑏𝑥4 − 𝛼𝑥3 + 𝑓2                                                          (7) 

where;  𝑓1 = −𝛽𝑥1
3 + 𝑓 cos 𝜔𝑡 and 𝑓2 = −𝛽𝑥3

3 + 𝑓 cos 𝜔𝑡. 

The response systems with parameter mismatch are as represented in the following equations 

                                             𝐷𝑞𝑥5 = 𝑥6 + 𝑢1                                                                   
                           𝐷𝑞𝑥6 = −(𝑏 + ∆𝑏)𝑥6 − (𝛼 + ∆𝛼)𝑥5 + 𝑓3 + 𝑢2                                    
                                              𝐷𝑞𝑥7 = 𝑥8 + 𝑢3                                                                   
                           𝐷𝑞𝑥8 = −(𝑏 + ∆𝑏)𝑥8 − (𝛼 + ∆𝛼)𝑥7 + 𝑓4 + 𝑢4                                            (8) 

 

where;  𝑓3 = −(𝛽 + ∆𝛽)𝑥5
3 + 𝑓 cos 𝜔𝑡 and 𝑓4 = −(𝛽 + ∆𝛽)𝑥7

3 + 𝑓 cos 𝜔𝑡. 

In order to achieve the goal of combination synchronization, the following error systems are 

derived from the drive and the response systems above 

                     𝑒1 = (𝑥5 + 𝑥7)  − (𝑥1 − 𝑥3)                                                                   
                                𝑒2 = (𝑥6 + 𝑥8)  − (𝑥2 − 𝑥4)                                                                           (9)    
Fractional order differential of (9) concerning time yields 

     𝐷𝑞𝑒1 = 𝑒2 + 𝑢1 + 𝑢3                                                   
𝐷𝑞𝑒2 = −𝑏𝑒2 − 𝛼𝑒1 − ∆𝑏(𝑥6 + 𝑥8) − ∆𝛼(𝑥5 + 𝑥7) − 𝑓1 + 𝑓2 + 𝑓3 + 𝑓4 + 𝑢2 + 𝑢4     (10) 

Step 1: Consider the stability of the first error dynamics of 10 by letting 𝑒1 = 𝓏1 and 

regarding 𝑒2 = 𝛼(𝓏1) as virtual work, a Lyapunov function in this direction is chosen as the 

Lyapunov function 𝑣1 =
1

2
𝓏1

2 and its fractional-order time derivative is given as 

𝐷𝑞𝑣1 = 𝐷𝑞𝓏1
2 = 𝓏1𝐷𝑞𝓏1 = 𝓏1(𝛼(𝓏1)) + 𝑢1 + 𝑢3                                                                    (11)     

(11) must be negative definite in order to establish the stability of the subsystem. As a result, let 

𝛼(𝓏1) = −𝓏1 and 𝑢1 = 𝑢3 = 0. Making right substitution (11) becomes 

𝐷𝑞𝑣1 = −𝓏1
2  ≤ 0                                                                                                                           (12) 
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The estimated error between in assumed virtual work is given as: 

                            𝓏2 = 𝑒2 − 𝛼(𝓏1) = 𝑒2 + 𝓏1                                                                              (13) 

The following subsystems are obtained as: 

𝐷𝑞𝓏1 = 𝓏2 − 𝓏1                                                   
𝐷𝑞𝓏2 = −𝑏(𝓏2 − 𝓏1) − 𝛼𝓏1 − ∆𝑏(𝑥6 + 𝑥8) − ∆𝛼(𝑥5 + 𝑥7) − 𝑓1 + 𝑓2 + 𝑓3 + 𝑓4 + 𝑢2 + 𝑢4

+ 𝓏2 −𝓏1                                                                                                                    (14) 

Step 2: In line with above subsystems 14, a Lyapunov function is chosen as 𝑣2 = 𝑣1 +
1

2
𝓏2

2and 

its fractional-order time derivative is 

𝐷𝑞𝑣2 = 𝐷𝑞𝑣1 + 𝓏2𝐷𝑞𝓏2                                                  
𝐷𝑞𝓏2 = −𝓏1

2 + 𝓏2[−𝑏(𝓏2 − 𝓏1) − 𝛼𝓏1 − ∆𝑏(𝑥6 + 𝑥8) − ∆𝛼(𝑥5 + 𝑥7) − 𝑓1 + 𝑓2 + 𝑓3 + 𝑓4 + 𝑢2

+ 𝑢4 + 𝓏2 −𝓏1]                                                                                                         (15) 

In order to achieve a stable stability condition 𝐷𝑞𝑣2 = −𝓏1
2 − 𝑘𝓏2

2 < 0 (negative definite) in 15 

then, we choose 

𝑢2 + 𝑢4 = 𝑏(𝓏2 − 𝓏1) + 𝛼𝓏1 − ∆𝑏(𝑥6 + 𝑥8) − ∆𝛼(𝑥5 + 𝑥7) + 𝑓1 − 𝑓2 − 𝑓3 − 𝑓4 − 𝑘𝓏2  (16) 

For simplicity, let 𝑢2 = 𝑢4 then, 

𝑢2 = 𝑢4 = 0.5[𝑏(𝓏2 − 𝓏1) + 𝛼𝓏1 + ∆𝑏(𝑥6 + 𝑥8) + ∆𝛼(𝑥5 + 𝑥7) + 𝑓1 − 𝑓2 − 𝑓3 − 𝑓4

− 𝑘𝓏2]                                                                                                                             (17) 

With the control functions chosen as (17) then, 

stable combination-difference synchronization 

of the drive and response systems is achieved. 

The coupled Parameter mismatch of the FOC 

Duffing oscillator with the derived control 

functions is numerically computed via the 

Runge-Kutta algorithm implemented on 

MATLAB software. The system parameters 

𝑏 = 0.01, 𝛼 = −0.5, 𝛽 = 1.0, 𝑓 = 0.095, 

𝜔 = 0.79, ∆𝑏 = 0.03, ∆𝛼 = −0.2,  ∆𝛽 = 0.8, 

∆𝑓 = 0.5, 𝑞1 = 0.98, 𝑞2 = 0.98 with initial 

conditions 0.01, 0.01, 1, 1, 0.5, 2, 0.1, 0.2 are 

employed. The error dynamics of the error 

variables as shown in Fig. 3 show that the error 

variable moves chaotically when the control 

functions are deactivated at 0 < 𝑡 < 50 and 

stabilized at zero when the control function is 

activated at 𝑡 < 50. The reduction of error 

functions to zero is an indication of global 

synchronization between the systems. Another 

evidence of global synchronization is shown in 

Fig.  4. Identical dynamic behaviour was 

achieved between the drive and the response 

systems when control functions were applied 

𝑡 < 50. 

 

5.0  Combination-Difference Synchronization of Financial Systems 

With Parameter Mismatch 

The drive systems for the combination-difference synchronization is represented by 

                                                 𝐷𝑞𝑥1 = 𝑥3(𝑥2 − 𝑎) 𝑥1                                                                  
                                                 𝐷𝑞𝑥2 = 1 − 𝑏𝑥2 − 𝑥1

2                                                               
                                                 𝐷𝑞𝑥3 = −𝑥1 − 𝑐𝑥3                                                                   
                                       𝐷𝑞𝑥4 = 𝑥6 + (𝑥5 − 𝛼)𝑥4                                                      
                                                𝐷𝑞𝑥5 = 1 − 𝑏𝑥5 − 𝑥4

2                                                               
                     𝐷𝑞𝑥6 = −𝑥4 − 𝑐𝑥6                                                                      (18) 
The response systems with parameter mismatch are as follows 

                                𝐷𝑞𝑥7 = 𝑥9 + (𝑥8 − (𝑎 + ∆𝑎) )𝑥7 + 𝑢1                                                                  
                                𝐷𝑞𝑥2 = 1 − (𝑏 + ∆𝑏)𝑥8 − 𝑥7

2 + 𝑢2                                                                
                                𝐷𝑞𝑥9 = −𝑥7 −  (𝑐 + ∆𝑐)𝑥9 + 𝑢3                                                               
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                    𝐷𝑞𝑥10 = 𝑥12 + (𝑥11 − (𝑎 + ∆𝑎))𝑥10 + 𝑢4                                                                  

                                 𝐷𝑞𝑥11 = 1 − (𝑏 + ∆𝑏)𝑥11 − 𝑥11
2 + 𝑢5                                                                   

                             𝐷𝑞𝑥12 = −𝑥10 −  (𝑐 + ∆𝑐)𝑥12 + 𝑢6                                                                (19) 
 

 

 
Fig.  3: The duffing error dynamics for combination-difference synchronization of the FOC 

duffing oscillators with parameter mismatch evolving from different initial conditions with 

the control function applied for 𝒕 < 𝟓𝟎. 
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Fig.  4: Dynamics of the Duffing oscillators state variables for combination-difference 

synchronization of the FOC duffing oscillators with parameter mismatch evolving from 

different initial conditions with the control function applied for 𝒕 < 𝟓𝟎. 
 

The following error systems are derived concerning the drive and response systems 

               𝑒1 = (𝑥7 + 𝑥10)  − (𝑥1 − 𝑥4)                                                                   
                         𝑒2 = (𝑥8 + 𝑥11)  − (𝑥2 − 𝑥5)                                                          
                         𝑒3 = (𝑥9 + 𝑥12)  − (𝑥3 − 𝑥6)                                                                                   (20) 

The fractional order derivative of (20) is given as 

 𝐷𝑞𝑒1 = 𝑒3 − 𝛼𝑒1 − ∆𝑎(𝑥7 + 𝑥10) + 𝑓1 + 𝑢1 + 𝑢4                                                  
𝐷𝑞𝑒2 = 2 − 𝑏𝑒2 − ∆𝑏(𝑥8 + 𝑥11) + 𝑓2 + 𝑢2 + 𝑢5      
𝐷𝑞𝑒3 = −𝑒1 − 𝑐𝑒3 − ∆𝑐(𝑥9 + 𝑥12) + 𝑢3 + 𝑢6                                                                                (21) 

where 𝑓1 = 𝑥7𝑥8 + 𝑥10𝑥11 − 𝑥1𝑥2 + 𝑥4𝑥5 

𝑓2 = −𝑥7
2 − 𝑥10

2 + 𝑥1
2 − 𝑥4

2 
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Step 1: Consider the stability of the first error dynamics of (21) by letting 𝑒1 = 𝑝1 and 

Regarding 𝑒3 = 𝛼3(𝑝1) as virtual work, a Lyapunov function in this direction is chosen as a 

Lyapunov function 𝑣1 =
1

2
𝑝1

2 and its fractional-order time derivative is given as 

𝐷𝑞𝑣1 = 𝐷𝑞𝑝1
2 = 𝑝1(𝛼3(𝑝1) − 𝛼𝑝1 − ∆𝑎(𝑥7 + 𝑥10) + 𝑓1 + 𝑢1 + 𝑢4 )                             (22) 

 

(11) must be negative definite to establish the stability of the subsystem. As a result, let 

𝛼3(𝑝1) = 0  and 

𝑢1 + 𝑢4 = 𝛼𝑝1 − ∆𝑎(𝑥7 + 𝑥10) − 𝑓1 − 𝑝1                                                                             (23) 

Making right substitution (22) becomes 

        𝐷𝑞𝑣1 = −𝑝1
2 ≤ 0                                                                                                      (24) 

Step 2: The estimative error between in assumed virtual work is given as 𝑝3 = 𝑒3 − 𝛼3(𝑝1) = 𝑒3   

since 𝛼3(𝑝1) = 0 The following sub-systems are obtained having made necessary substitutions 

                𝐷𝑞𝑝1 = 𝑝3 

𝐷𝑞𝑝3 = −𝑝1−𝑐𝑝3 − ∆𝑐(𝑥9 + 𝑥12) + 𝑢3 + 𝑢6                                                                        (25) 

In line with above subsystems 25, a Lyapunov function is chosen as 𝑣3 = 𝑣1 +
1

2
𝑝3

2 

and its fractional-order time derivative is     

           𝐷𝑞𝑣3 = 𝐷𝑞𝑣1 + 𝑝3 𝐷𝑞𝑝3 

= −𝑝1
2 + 𝑝3(−𝑝1−𝑐𝑝3 − ∆𝑐(𝑥9 + 𝑥12) + 𝑢3 + 𝑢6 )                                                           (26) 

     

In order to achieve a stable stability condition 𝐷𝑞𝑣3 = −𝑝1
2 − c𝑝3

2 < 0 (negative definite) in (26) 

then, we choose 

𝑢3 + 𝑢6 = 𝑝1 + ∆𝑐(𝑥9 + 𝑥12)                                                                                                    (27) 

Step 3: Let 𝑒2 = 𝛼2(𝑝1,, 𝑝2)where 𝛼2(𝑝1,, 𝑝2) is virtual work then, 𝑝2, = 𝑒2, − 𝛼2(𝑝1,, 𝑝2). In 

order to establish the goal of combination-difference synchronization, a Lyapunov function 

is choosing as 𝑣2 = 𝑣3 +
1

2
𝑝2

2 with its fractional order time derivative given as: 

    𝐷𝑞𝑣2 = 𝐷𝑞𝑣3 + 𝑝2 𝐷𝑞𝑝2 

= −𝑝1
2 + 𝑐𝑝3

2 + 𝑝2(−𝑏𝑝2 − ∆𝑏(𝑥8 + 𝑥11) + 𝑓2 + 𝑢2 + 𝑢5 )                                               (28) 

If 𝑢2 + 𝑢5 = −𝑓2+𝑏𝑝2 + ∆𝑏(𝑥8 + 𝑥11) − 𝑝2 and 𝛼2(𝑝1,, 𝑝2) = 0 then, Lyapunov function 

Becomes 𝐷𝑞𝑣2 = −𝑝1
2 + 𝑐𝑝3

2 + 𝑝2
2 ≤ 0 is negative definite which shows that the coupled 

systems of the drive and the response systems are stable and stable synchronization is achieved. 

For simplicity of the control function we have 

𝑢2 = 𝑢5 = 0.5(−𝑓2+𝑏𝑝2 + ∆𝑏(𝑥8 + 𝑥11) − 𝑝2)                                                                    (29) 

T

he coupled parameter mismatch of the FOC 

financial systems with the derived control 

functions are numerically computed via the 

Runge-Kutta algorithm implemented on 

MATLAB software. The system parameters 

𝑎 = 0.3,  𝑏 =0.1, 𝑐 = 1.0, ∆𝑎 = 0.2, ∆𝑏 =
0.15, ∆𝑐 = 1.5, 𝑞1 = 0.9, 𝑞2 = 0.9, 𝑞3 = 0.9 

with initial conditions 1, 1, 1, 1.5, 1.5, 1.5, 2, 2, 

2, 2.5, 2.5, 2.5, are employed. The error 

dynamics of the error variables as shown in Fig. 

5 show that the error variable moves 

chaotically when the control functions are 

deactivated at 0 < 𝑡 < 5 and stabilized at zero 

when the control functions are activated at 𝑡 >
10. The reduction of error functions to zero 

indicates global synchronization between the 

systems. Another evidence of global 

synchronization is shown in Fig.  6. 

Identical dynamic behaviour was achieved 

between the drive and the response systems 

when control functions were applied 𝑡 > 10. 
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Fig.  5: The financial systems error dynamics for combination-difference synchronization 

of the FOC financial systems with parameter mismatch evolving from different initial 

condition with the control function applied for 𝒕 > 𝟏𝟎. 
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Fig.  6: Dynamics of the financial systems state variables for combination-difference 

synchronization of the FOC financial systems with parameter mismatch evolving from 

different initial condition with the control function applied for 𝒕 > 𝟏𝟎. 
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6.0  Conclusion 

A new synchronization scheme called 

combination-difference has been established 

via application backstepping technique to 

identical FOC duffing oscillator and identical 

FOC financial systems with parameter 

mismatch evolving from different initial 

conditions. The results obtained show that the 

scheme is effective and can be used to achieve 

synchronization among several groups of 

complex dynamical systems either integer 

order or fractional order systems.  Also, the 

successful implementation of this 

synchronization scheme has increased the 

number of existing synchronization schemes. 

This synchronization scheme is developed for 

fractional order systems for the first time to the 

best of our knowledge. hence, adding to the 

body of knowledge. The new synchronization 

scheme would have potential applications in 

biological systems where many organs need to 

synchronize or anti-synchronize to function 

effectively. 
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