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Abstract A systematic approach to time series model 
selection is very important for reduction of the 
uncertainties associated with highly subjective and 
inaccurate method currently being used. Information 
criteria as a measure of goodness of fit have been 
criticized because of its statistical inefficiency. In this 
paper, we develop a rule using discriminant analysis for 
classification of a time series model from a finite list of 
parsimonious ARMA (p,q) models. A discriminant 
function is developed for each of the six alternative 
ARMA(p,q) models using fifty sets of simulated time series 
data for each model. An algorithm is developed  for the 
evaluation of discriminant scores and model selection. 
The selection rule is based on the highest discriminant 
score among the six alternative models. The method was 
applied to a real life data and thirty sets of simulated data. 
The  real life application resulted in correct model  
selection while the simulated data gave 93% correct 
classification.                                                                                                                                                                                                                                                 
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1.0 Introduction 
In time series model development using Box and Jenkins 
(1970), it has been observed that no precise formulation of 
the problem is available at different stages. The stage 
which involves comparison of the autocorrelation 
functions (ACF) and partial autocorrelation functions 
(PACF) obtained from the series for which a model is to 
be fitted with the known theoretical behavior is subject to 
individual judgment and therefore inexact (Box, Jenkins 
and Reinsel, 2008). In all the iterative steps usually taken 
before the final model is selected, this stage seems to be 
the most challenging and most ambiguous. In practice, the 
best model is supposed to be selected in order to ensure 
accurate forecast. Tsay and Tiao (1984, 1985) proposed 
the use of extended autocorrelation function (EACF) and 
smallest canonical correlation (SCAN) respectively for 

identifying various orders of autoregressive moving 
average (ARMA (p,q)) model when , 0p q  . Their 

proposal is even more challenging since comparing EACF 
and canonical correlation of theoretical models with that 
of the Series at hand is very difficult as the sample EACF 
has no clear cut off (Cryer and Chan, 2008).  The use of 
Akaike (1969) and various forms of information criteria in 
final model selection has been criticized as their approach 
is based on values calculated from residual of already 
fitted models which is perceived as information loss from 
fitting that particular order into the series (Akaike, 1974, 
1979, 1980; Bhansali, 1993; Hannan and Quinn, 1979; 
Schwartz, 1978; Anderson, 2008; Anderson, 1975 and 
Pukkila, Koreisha and Kallinen, 1990). Also, Shibata 
(1976) has shown that Akaike information criterion (AIC) 
tend to overestimate the true order of an AR model while 
the Bayesian information criterion (BIC) under estimate it. 
Zazli (2002) in a comparative study concluded that the 
efficiency of various information criteria depends on 
where it is being used. He advised that various information 
criteria be combined to avoid problem associated with 
inefficiency of respective information criterion. Rayalu, 
Ravisankar and Mythili (2017) suggested a goodness of fit 
criterion for ARMA (p, q) model and modified the AIC 
and SBC but could not show an illustrative example for its 
use. Jamil and Bouchachia (2019) discussed the problem 
of selecting model parameters in time series forecasting 
using aggregation. They proposed a new algorithm that 
relies on the paradigm of prediction with expert advice, 
where online and offline autoregressive models are 
regarded as experts.  
Discriminant analysis is a multivariate method that  
classifies a given observation into one of the available k-
classes  2k  . The proposed model selection procedure 

is based on the discriminant function. In contrast with Box 
and Jenkins methodology which only compares the 
features of the ACF and PACF of the series for which a 
model is to be fitted with the theoretical features, this 
approach uses the actual values of those features. 
Furthermore, it selects a model automatically from a finite 
list of alternative models. Shah (1997) developed 
an individual selection rule using discriminant analysis 
and compared its performance to aggregate selection for 
the quarterly series of the M-Competition data. The results 
indicated that the individual selection rule based on 
discriminant scores is more accurate and sometimes 
significantly so, than any aggregate selection method.  
In this paper, we develop a rule for selection of the best 
autoregressive moving average ARMA (p,q) model using 
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discriminant analysis. This method combines modified 
discriminant functions obtained using some structural 
features of simulated series of a list of ARMA (p, q) 
models. An algorithm which is to be used alongside the 
discriminant functions for model selection is also 
developed.  
In section 2, we introduce the model selection using 
discriminant analysis, the six alternative models, the 
development of the discriminant function and the 
proposed algorithm. Results and discussion including the 
application to both simulated data and real life data are 
presented in section 3. The conclusions are given in 
section 4 while the references are in section 5. 
2.0  Model selection using discriminant analysis 
The discriminant function development using the features 
of a series is based on the normality assumption. The two 
main analyses that are based on this assumption are the 
linear discriminant analysis (LDA) and the quadratic 
discriminant analysis (QDA). The Bayesian quadratic 
discriminant analysis (QDA) was first proposed by 
Geisser (1964) and Keehn (1965) and their work has 
attracted series of subsequent work on the Bayesian QDA 
(Srivastava, Gupta and Frigyik, 2007). 
Consider the population X whose group is k, one of the 
basic assumptions of discriminant analysis is that k is 
multivariate normal with parameter k  and covariance 

matrix k . If we let k  be the prior probability that an 

arbitrary unit belong to group k defined mathematically 

as  k P G k   , then the Bayes classification rule is 

given by  /P G k X x   which is defined as,  
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Equation (1) is derived from the Bayes theorem hence the 
name Bayes classification rule (Bickel and Levina, 2004). 
Compute the posterior probability ( / )P G k X x   for 

each class k given the observation vector x  and the class 
with the highest value is the most likely class for the unit 
being considered. Knowing the prior probability, the 
posterior probability can be calculated and used to predict 
class membership of an arbitrary series. 
Consider 1( / )P G k X x   and 2( / )P G k X x  ; 
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Substituting the assumed multivariate normal distribution 
and taking log of both sides gives, 
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Therefore, for the observation vector x , equation (3) 
reduces to,  
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Generalizing equation (4) we obtain the quadratic 
discriminant function as,
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Group k is more likely if equation (5) is highest. 
Consider the expression in equation (4), let 
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Expanding the expression above and re-arranging we find 
that,   
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Generalizing equation (7) we obtain the linear 
discriminant function as,  
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Given an observation vector x , group k is more likely if 
equation (8) is highest. 
The use of this function is based on the multivariate 
normal distribution. Note that when both k  and k  are 

assumed to vary with k , the quadratic discriminant 
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function is adopted but when  k differ with k  and k  

is the same for all k , the linear discriminant function is 
adopted. The classification rules are the same for both 
functions and states that given an observation vector x , 
the class k for which the discriminant function of x  is 
highest is the most likely class of the unit on which x  is 
calculated.  
The estimated parameters of the two discriminant 
functions considered are k ,  , k  and k . If they are 

plugged directly into the Bayes classification rules, we 
will obtain Fisher’s classification rules (Bickel and 
Levina, 2004). 
2.1 The Alternative Models 

The general class of models to be used in the development 
of the discriminant function is the ARMA (p, q) model 
with 0 ≤ p, q ≤ 2. However, for simplicity we restrict the 
study to six models to be included in the list of alternatives 
from which selection will be made. They are: AR (1), AR 
(2), MA (1), MA (2), ARMA (1, 1) and ARMA (2, 2). The 
lower orders of ACF and PACF of all the models are 
defined as feature variables for use in the development of 
the discriminant rule. In ARMA modeling the 
autocorrelation and partial autocorrelation functions are 
extensively used in identification stage (Shah, 1997 and 
box and Jenkins, 1970). The Box and Jenkins approach is 
characterized by tentative determination of the order of the 
model, fitting of several models and the use of information 
criteria to select the best model. However, for ARMA 
(p,q) model, no tentative model can be chosen accurately 
since the value of p and q cannot be determined with both 
ACF and PACF tailing off.  These models are also 
classified according to Box and Jenkins as parsimonious 
models with parameters lying between 0 ≤ p, q ≤ 2. The 
problem of choosing the most appropriate feature 
variables is not simple, (Shah 1997), however, eight 
feature variables were defined and computed for each 
series. 
2.2  Development of the discriminant function 
The proposed model selection procedure is based on the 
assumption that the ACF and PACF which are within-
sample structural features of the series are functions of the 
selected model (Shah, 1997). In line with Box and Jenkins 
(1976), these features play a significant role in model 
selection. They are measurable and their values are used 
to form the vector x of dimension d . A discriminant rule 
is estimated that gives the posterior probability for a series 
belonging to each of the six models, given its feature 
vector x. The series is assigned to belong to the group for 
which the probability is greatest. The discriminant rule is 
constructed from a data set of n series whose model is 
known a priori as coming from the alternative list. To 

develop the discriminant functions, we simulated 150 
known theoretical time series patterns (models) each for 
the six linear stationary models considered. For each 
simulated theoretical time series, we obtain the vector 

 1 8,...,x x x  where 1 4,...,x x  are absolute values of 

ACF of n sets of time series at lag 1 to 4 respectively; 

5 8,...,x x  are absolute values of PACF of n sets of time 

series at lag 2 to 5. The vector  1 8,...,x x x is an 8 

dimensional multivariate random variable used in 
developing the discriminant function. The absolute values 
of these structural features were used to avoid loss of 
information since model selection considers only the 
magnitude of ACF and PACF but not the sign. 
Multivariate normality of the eight dimensional feature 
vector 𝑥 with mean vector varying with the groups is 
assumed. The quadratic discriminant rule is adopted 
following the failure of the test for equality of variance-
covariance matrix. For each group say k, the covariance 
matrix k  and the mean vector k  for the variables are 

calculated. The discriminant function which is developed 
for group k is now given as follow: 

6&5,4,3,2,1k    where  
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Where k is the prior probability that the individual or 

item considered belong to group k. This is assumed equal 
for all groups and as such is 1/6. The quadratic function is 
a function of the vector 𝑥. These parameters are calculated 
and substituted in equation (9) for all the groups. 
The model selection rule can be used for various sets of 
time series data. It is a discriminant function based on six 
simulated parsimonious theoretical models. The 
developed quadratic discriminant functions is such that 
any arbitrary time series can be assigned to the appropriate 
theoretical model using the discriminant score and the 
selected model fitted into the series. This approach does 
not have tentative model selection stages which are 
traditionally seen in time series modeling. The 
discriminant scores are highly comparable with the 
conventional information criteria in terms of behavior. 
However, while the information criterion chooses the 
model that minimizes the error terms, the discriminant 
scores choose the model that maximizes the probability. 
2.3  The proposed algorithm for model selection 
This proposed algorithm shows the step by step 
implementation of selecting the best model using 
discriminant analysis. Given a Series whose theoretical 
model is to be identified, the summary of the proposed 
model selection algorithm is presented below: 



Communication in Physical Sciences 2018, 3(1): 61-66  64 

 

 

Step 1: select the models to be included in the list of 
alternatives and set the criterion for model selection. 

Step 2: simulate n sets of sample time series data from 
the list of alternative models.  

Step 3: use the absolute values of the feature variables 
 lag 1-4 of ACF and lag 2-5 of PACF that form an 
8-dimensional vector 𝑥 to obtain the discriminant 
function for each model listed. 

Step 4: use the time series of interest and obtain the 
feature variables lag 1-4 of ACF and lag 2-5 of 
PACF and denote the observation vector 𝑥 𝑎𝑠 𝑥் =
(𝑥ଵ , 𝑥ଶ, 𝑥ଷ, 𝑥ସ, 𝑥ହ, 𝑥଺, 𝑥଻, 𝑥଼). 

Step 5: input the vector 𝑥 into each of the six 
discriminant functions to obtain the discriminant 
score. 

Step 6: select the model with the highest discriminant  
score and fit the series. 

Step 7: perform a diagnostic test on the fitted model and 
stop iteration if the model is adequate, else, go back 
to step 6 and consider the model with the next 
highest discriminant score.  

3.0  Results and discussion 
3.1 Applications to simulated data 
Table 1 shows the discriminant scores obtained using 30 
simulated Time Series data. The result shows that twenty 
eight of the simulated time series were correctly selected 
after the first iteration while only two were selected in two 
iterations. This implies that the approach has a 93% 
correct classification. The algorithm was now used in the 
selection of the model for each group. This method is 
limited to ARMA (p,q) models with 𝑝, 𝑞 ≤ 2 which 
represent the orders of the models that are adequate and 
parsimonious in most cases, (Box and Jenkins, 1970). 

Table 1: Result of the classification using discriminant scores 
. 
Simulated 
models 

Discriminant Scores 
AR(1)         AR(2)         MA(1)         MA(2)       ARMA(1,1)   ARMA(2,2) 

Selected 
model 

AR(1) 5.009 0.192 -607.280 -425.320 -27.224 2.523 AR(1) 
AR(2) -106.844 2.947 -907.180 -565.400 -106.990 2.200 AR(2) 
MA(1) -80.299 -20.815 5.571 -3.841 -24.010 -7.252 MA(1) 
MA(2) -159.205 -9.024 -12.293 5.870 -23.847 -10.293 MA(2) 
ARMA(1,1) -42.247 -0.328 -26.004 -0.526 4.313 -1.480 ARMA(1,1) 
ARMA(2,2) -205.973 -41.364 -698.226 -526.475 -191.148 2.825 ARMA(2,2) 
AR(1) 6.499 2.928 -203.215 -120.680 0.959 3.095 AR(1) 
AR(2) -39.725 2.782 -876.205 -575.276 -81.936 2.588 AR(2) 
MA(1) -71.388 -2.905 5.652 1.751 -6.718 0.715 MA(1) 
MA(2) -68.948 2.221 -3.737 4.726 -1.527 0.155 MA(2) 
ARMA(1,1) -25.254 0.593 -33.831 1.509 5.694 -0.587 ARMA(1,1) 
ARMA(2,2) -186.457 -30.727 -782.687 -590.226 -226.234 2.143 ARMA(2,2) 
AR(1) 3.860 1.469 -258.450 -156.574 -1.163 2.902 AR(1) 
AR(2) -224.960 -19.523 -266.207 -97.825 -116.043 -21.468 AR(2) 
MA(1) -2.697 -4.704 -1119.800 -837.861 -79.673 0.598 MA(1) 
MA(2) 0.632 -4.844 -1039.500 -803.633 -69.968 0.346 MA(2) 
ARMA(1,1) -20.254 1.593 -13.831 1.709 4.694 -1.587 ARMA(1,1) 
ARMA(2,2) -18.457 -31.727 -482.687 -790.226 -206.234 3.143 ARMA(2,2) 
AR(1) -235.224 -17.603 -239.314 -100.281 -107.646 -20.887 ARMA(1,1)* 
AR(2) -220.960 -11.523 -206.207 -91.825 -106.043 -22.468 AR(2) 
MA(1) -36.443 -3.374 6.970 3.719 -26.813 -9.009 MA(1) 
MA(2) -773.883 -7.664 5.554 0.323 -9.191 -5.498 MA(2) 
ARMA(1,1) -63.110 -8.835 6.982 1.968 -17.830 -6.537 ARMA(1,1) 
ARMA(2,2) -106.457 -20.727 -682.687 -390.226 -222.234 2.143 ARMA(2,2) 
AR(1) 5.909 0.933 -574.995 -423.717 -24.843 2.711 AR(1) 
AR(2) -271.480 -25.978 -335.736 -125.318 -158.651 -21.359 ARMA(2,2)* 
MA(1) -37.171 -3.367 6.097 1.631 -8.471 -5.395 MA(1) 
MA(2) -61.948 1.221 -2.737 3.726 -0.527 1.155 MA(2) 
ARMA(1,1) -24.941 3.842 -16.504 1.600 6.693 2.949 ARMA(1,1) 
ARMA(2,2) -17.174 -21.021 -1338.900 -897.545 -98.209 -2.196 ARMA(2,2) 
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3.2. Application to real life data 
Consider series A (Chemical Process concentration 
readings: every two hours) time series data from Box, 
Jenkins and Reinsel (2008) p. 670 which was modeled as 
ARMA (1,1). We now apply the model selection 
algorithm to this series as follows:  
Step 1: use the discriminant functions of the six 

parsimonious alternative models obtained 
Step 2: use series A sample data and obtain the absolute  

values of the ACF at lag 1- 4 and PACF at lag 2-5, 
to give the vector x ; 

)07.0,08.0,07.0,24.0,29.0,32.0,42.0,48.0(x T   

Step 3: Input the observation vector 𝑥 into each of the 
discriminant functions to get the resulting 
discriminant scores as: -87.694, -30.365, -186.053, 
-117.148, -26.840 and -41.205. for AR(1), AR(2), 
MA(1), MA(2), ARMA(1,1) and ARMA (2,2)  
respectively.  

Step 4: select ARMA (1, 1) model with the highest score 
of – 26.840 as the best model  

Step 4: stop since the diagnostic check shows that it is 
adequate.  

In conclusion, this real-life application was correctly 
selected in only a single iteration. 
4.0 Conclusions 
Model selection is an integral part of the tasks involved in 
ARMA time series model development. The traditional 
approach of initially selecting several tentative models  
and then using information criteria to choose the best is 
known to have some shortfalls which include but not 
limited to lack of precise problem formulation and 
interference of personal judgment. We have adopted an 
approach which is systematic and different from Box and 
Jenkins. The approach uses the actual values of ACF from 
lag 1 - 4 and PACF from lag 2 -5 obtained from the series 
to be fitted as against the traditional approach that relies 
on careful examination of the behavior of the sample ACF 
and PACF.  
This approach requires a determination of the discriminant 
score and using it to select the best model thereby 
addressing the problems with overlapping nature of 
identification and estimation stages in the Box and Jenkins 
approach. The algorithm developed along with the 
discriminant function is capable of selecting the exact 
model with very high level of certainty and in event where 
the selected model is not the appropriate model,  
 
 
 
the algorithm also predetermines the next model to be 
considered. 

The correct classification of 93% from the simulated series 
is quite high and encourages the recommendation of the 
method.  The series A time series data from Box, Jenkins 
and Reinsel (2008) was correctly selected in only a single 
iteration. Finally, this method is generally characterized 
by well-organized rules and procedures for model 
selection while the Box and Jenkins method is 
unavoidably characterized by uncertainty due to 
individual judgment.  
Further research is needed in the selection of appropriate 
set of feature variables. Given a set of eight feature 
variables used in this work, it is possible that smaller set 
may significantly discriminate between the sample 
models. 
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